Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package runonce helps automating the saving of long-running code to help running the same code multiple times. If you run some long-running code once, it saves the result in a file on disk. Then, if the result already exists, i.e. if the code has already been run and its output has already been saved, it just reads the result from the stored file instead of running the code again.
This package provides XML parsing capability through the Rapidxml C++ header-only library.
This package provides access to Rangeland Analysis Platform (RAP) products <https://rangelands.app/products> for arbitrary extents via GDAL virtual file system.
This package provides a flexible framework for implementing hierarchical access control in shiny applications. Features include user permission management through a two-tier system of access panels and units, pluggable shiny module for administrative interfaces, and support for multiple storage backends (local, AWS S3', Posit Connect'). The system enables fine-grained control over application features, with built-in audit trails and user management capabilities. Integrates seamlessly with Posit Connect's authentication system.
This package provides functions for reading data sets in different formats for testing machine learning tools are provided. This allows to run a loop over several data sets in their original form, for example if they are downloaded from UCI Machine Learning Repository. The data are not part of the package and have to be downloaded separately.
Facilitates the use of machine learning algorithms in classification and regression (including time series forecasting) tasks by presenting a short and coherent set of functions. Versions: 1.5.0 improved mparheuristic function (new hyperparameter heuristics); 1.4.9 / 1.4.8 improved help, several warning and error code fixes (more stable version, all examples run correctly); 1.4.7 - improved Importance function and examples, minor error fixes; 1.4.6 / 1.4.5 / 1.4.4 new automated machine learning (AutoML) and ensembles, via improved fit(), mining() and mparheuristic() functions, and new categorical preprocessing, via improved delevels() function; 1.4.3 new metrics (e.g., macro precision, explained variance), new "lssvm" model and improved mparheuristic() function; 1.4.2 new "NMAE" metric, "xgboost" and "cv.glmnet" models (16 classification and 18 regression models); 1.4.1 new tutorial and more robust version; 1.4 - new classification and regression models, with a total of 14 classification and 15 regression methods, including: Decision Trees, Neural Networks, Support Vector Machines, Random Forests, Bagging and Boosting; 1.3 and 1.3.1 - new classification and regression metrics; 1.2 - new input importance methods via improved Importance() function; 1.0 - first version.
This package provides a data mining approach for longitudinal and clustered data, which combines the structure of mixed effects model with tree-based estimation methods. See Sela, R.J. and Simonoff, J.S. (2012) RE-EM trees: a data mining approach for longitudinal and clustered data <doi:10.1007/s10994-011-5258-3>.
This package provides a wrapper for Jagger, a morphological analyzer proposed in Yoshinaga (2023) <arXiv:2305.19045>. Jagger uses patterns derived from morphological dictionaries and training data sets and applies them from the beginning of the input. This simultaneous and deterministic process enables it to effectively perform tokenization, POS tagging, and lemmatization.
Function for generating random gender and ethnicity correct first and/or last names. Names are chosen proportionally based upon their probability of appearing in a large scale data base of real names.
Mappable vector library provides convenient way to access large datasets. Use all of your data at once, with few limits. Memory mapped data can be shared between multiple R processes. Access speed depends on storage medium, so solid state drive is recommended, preferably with PCI Express (or M.2 nvme) interface or a fast network file system. The data is memory mapped into R and then accessed using usual R list and array subscription operators. Convenience functions are provided for merging, grouping and indexing large vectors and data.frames. The layout of underlying MVL files is optimized for large datasets. The vectors are stored to guarantee alignment for vector intrinsics after memory map. The package is built on top of libMVL, which can be used as a standalone C library. libMVL has simple C API making it easy to interchange datasets with outside programs. Large MVL datasets are distributed via Academic Torrents <https://academictorrents.com/collection/mvl-datasets>.
Enables the use of color palettes inspired by the Dune movies. These palettes are compatible with ggplot2'. See Wickham (2016) <doi:10.1007/978-3-319-24277-4> for more details on ggplot2'.
shiny extension that adds regular expression filtering capabilities to the choice vector of the select list.
This package provides a tool to calculate Cardiovascular Risk Scores in large data frames as published in Perez-Vicencio, et al (2024) <doi:10.1136/openhrt-2024-002755>. Cardiovascular risk scores are statistical tools used to assess an individual's likelihood of developing a cardiovascular disease based on various risk factors, such as age, gender, blood pressure, cholesterol levels, and smoking. Here we bring together the six most commonly used in the emergency department. Using RiskScorescvd', you can calculate all the risk scores in an extended dataset in seconds. PCE (ASCVD) described in Goff, et al (2013) <doi:10.1161/01.cir.0000437741.48606.98>. EDACS described in Mark DG, et al (2016) <doi:10.1016/j.jacc.2017.11.064>. GRACE described in Fox KA, et al (2006) <doi:10.1136/bmj.38985.646481.55>. HEART is described in Mahler SA, et al (2017) <doi:10.1016/j.clinbiochem.2017.01.003>. SCORE2/OP described in SCORE2 working group and ESC Cardiovascular risk collaboration (2021) <doi:10.1093/eurheartj/ehab309>. TIMI described in Antman EM, et al (2000) <doi:10.1001/jama.284.7.835>. SCORE2-Diabetes described in SCORE2-Diabetes working group and ESC Cardiovascular risk collaboration (2023) <doi:10.1093/eurheartj/ehab260>. SCORE2/OP with CKD add-on described in Kunihiro M et al (2022) <doi:10.1093/eurjpc/zwac176>.
Supports concordances in R Markdown documents. This currently allows the original source location in the .Rmd file of errors detected by HTML tidy to be found more easily, and potentially allows forward and reverse search in HTML and LaTeX documents produced from R Markdown'. The LaTeX support has been included in the most recent development version of the patchDVI package.
Easy to use interface for conducting meta-analysis in R. This package is an Rcmdr-plugin, which allows the user to conduct analyses in a menu-driven, graphical user interface environment (e.g., CMA, SPSS). It uses recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009).
Sequential permutation testing for statistical significance of predictors in random forests and other prediction methods. The main function of the package is rfvimptest(), which allows to test for the statistical significance of predictors in random forests using different (sequential) permutation test strategies [1]. The advantage of sequential over conventional permutation tests is that they are computationally considerably less intensive, as the sequential procedure is stopped as soon as there is sufficient evidence for either the null or the alternative hypothesis. Reference: [1] Hapfelmeier, A., Hornung, R. & Haller, B. (2023) Efficient permutation testing of variable importance measures by the example of random forests. Computational Statistics & Data Analysis 181:107689, <doi:10.1016/j.csda.2022.107689>.
An integrated package for constructing random forest prediction intervals using a fast implementation package ranger'. This package can apply the following three methods described in Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel J. Nordman (2019) <doi:10.1080/00031305.2019.1585288>: the out-of-bag prediction interval, the split conformal method, and the quantile regression forest.
Facilities for assessing R packages against a number of metrics to help quantify their robustness.
This package provides functions for estimating models using a Hierarchical Bayesian (HB) framework. The flexibility comes in allowing the user to specify the likelihood function directly instead of assuming predetermined model structures. Types of models that can be estimated with this code include the family of discrete choice models (Multinomial Logit, Mixed Logit, Nested Logit, Error Components Logit and Latent Class) as well ordered response models like ordered probit and ordered logit. In addition, the package allows for flexibility in specifying parameters as either fixed (non-varying across individuals) or random with continuous distributions. Parameter distributions supported include normal, positive/negative log-normal, positive/negative censored normal, and the Johnson SB distribution. Kenneth Train's Matlab and Gauss code for doing Hierarchical Bayesian estimation has served as the basis for a few of the functions included in this package. These Matlab/Gauss functions have been rewritten to be optimized within R. Considerable code has been added to increase the flexibility and usability of the code base. Train's original Gauss and Matlab code can be found here: <http://elsa.berkeley.edu/Software/abstracts/train1006mxlhb.html> See Train's chapter on HB in Discrete Choice with Simulation here: <http://elsa.berkeley.edu/books/choice2.html>; and his paper on using HB with non-normal distributions here: <http://eml.berkeley.edu//~train/trainsonnier.pdf>. The authors would also like to thank the invaluable contributions of Stephane Hess and the Choice Modelling Centre: <https://cmc.leeds.ac.uk/>.
Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. This package contains graphical, getter and some utility functions to facilitate the analysis of MixtComp output.
Wrapper for the PoetryDB API <http://poetrydb.org> that allows for interaction and data extraction from the database in an R interface. The PoetryDB API is a database of poetry and poets implemented with MongoDB to enable developers and poets to easily access one of the most comprehensive poetry databases currently available.
Parser generator for R using combinatory parsers. It is inspired by combinatory parsers developed in Haskell.
Robust covariance estimation for matrix-valued data and data with Kronecker-covariance structure using the Matrix Minimum Covariance Determinant (MMCD) estimators and outlier explanation using and Shapley values.
Exports an Rcpp interface for the Bessel functions in the Bessel package, which can then be called from the C++ code of other packages. For the original Fortran implementation of these functions see Amos (1995) <doi:10.1145/212066.212078>.