Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Work with the PhyloPic Web Service (<http://api-docs.phylopic.org/v2/>) to fetch silhouette images of organisms. Includes functions for adding silhouettes to both base R plots and ggplot2 plots.
Robust tests (RW and RF) are provided for testing the equality of two long-tailed symmetric (LTS) means when the variances are unknown and arbitrary. RW test is a robust version of Welch's two sample t test and the RF is a robust fiducial based test. The RW and RF tests are proposed using the adaptive modified maximum likelihood (AMML) estimators derived by Tiku and Surucu (2009) <doi:10.1016/j.spl.2008.12.001> and Donmez (2010) <https://open.metu.edu.tr/bitstream/handle/11511/19440/index.pdf>.
Download the lyrics of your favorite songs in text and table formats. Also search for related songs or song information. More information: <https://docs.genius.com/> .
The header-only C++ template library FastAD for automatic differentiation <https://github.com/JamesYang007/FastAD> is provided by this package, along with a few illustrative examples that can all be called from R.
This package provides functions to calculate Sample Number and Average Sample Number for Repetitive Group Sampling Plan Based on Cpk as given in Aslam et al. (2013) (<DOI:10.1080/00949655.2012.663374>).
Code to facilitate simulation and inference when connectivity is defined by underlying random walks. Methods for spatially-correlated pairwise distance data are especially considered. This provides core code to conduct analyses similar to that in Hanks and Hooten (2013) <doi:10.1080/01621459.2012.724647>.
Designed to be compatible with the R package DBI (Database Interface) when connecting to Amazon Web Service ('AWS') Athena <https://aws.amazon.com/athena/>. To do this Python Boto3 Software Development Kit ('SDK') <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> is used as a driver.
This package provides a set of tools for creation, manipulation, and modeling of tensors with arbitrary number of modes. A tensor in the context of data analysis is a multidimensional array. rTensor does this by providing a S4 class Tensor that wraps around the base array class. rTensor provides common tensor operations as methods, including matrix unfolding, summing/averaging across modes, calculating the Frobenius norm, and taking the inner product between two tensors. Familiar array operations are overloaded, such as index subsetting via [ and element-wise operations. rTensor also implements various tensor decomposition, including CP, GLRAM, MPCA, PVD, and Tucker. For tensors with 3 modes, rTensor also implements transpose, t-product, and t-SVD, as defined in Kilmer et al. (2013). Some auxiliary functions include the Khatri-Rao product, Kronecker product, and the Hadamard product for a list of matrices.
R2 statistic for significance test. Variance and covariance of R2 values used to assess the 95% CI and p-value of the R2 difference.
Helps to fit thermal performance curves (TPCs). rTPC contains 26 model formulations previously used to fit TPCs and has helper functions to set sensible start parameters, upper and lower parameter limits and estimate parameters useful in downstream analyses, such as cardinal temperatures, maximum rate and optimum temperature. See Padfield et al. (2021) <doi:10.1111/2041-210X.13585>.
Bundles the datasets and functions featured in Philip H. Pollock and Barry C. Edwards<https://edge.sagepub.com/pollock>, "An R Companion to Political Analysis, 3rd Edition," Thousand Oaks, CA: Sage Publications.
This package implements the "Stemming Algorithm for the Portuguese Language" <DOI:10.1109/SPIRE.2001.10024>.
An implementation of Kaplan, Betancourt, Steorts (2022) <doi:10.1080/00031305.2022.2041482> that creates representative records for use in downstream tasks after entity resolution is performed. Multiple methods for creating the representative records (data sets) are provided.
The APT Package Management System provides Debian and Debian-derived Linux systems with a powerful system to resolve package dependencies. This package offers access directly from R. This can only work on a system with a suitable libapt-pkg-dev installation so functionality is curtailed if such a library is not found.
Perform sigmoidal Emax model fit using Stan in a formula notation, without writing Stan model code.
Calculates evaluation metrics for implicit-feedback recommender systems that are based on low-rank matrix factorization models, given the fitted model matrices and data, thus allowing to compare models from a variety of libraries. Metrics include P@K (precision-at-k, for top-K recommendations), R@K (recall at k), AP@K (average precision at k), NDCG@K (normalized discounted cumulative gain at k), Hit@K (from which the Hit Rate is calculated), RR@K (reciprocal rank at k, from which the MRR or mean reciprocal rank is calculated), ROC-AUC (area under the receiver-operating characteristic curve), and PR-AUC (area under the precision-recall curve). These are calculated on a per-user basis according to the ranking of items induced by the model, using efficient multi-threaded routines. Also provides functions for creating train-test splits for model fitting and evaluation.
This package provides methods and tools for Singular Spectrum Analysis including decomposition, forecasting and gap-filling for univariate and multivariate time series. General description of the methods with many examples can be found in the book Golyandina (2018, <doi:10.1007/978-3-662-57380-8>). See citation("Rssa") for details.
This package provides a random-effects stochastic model that allows quick detection of clonal dominance events from clonal tracking data collected in gene therapy studies. Starting from the Ito-type equation describing the dynamics of cells duplication, death and differentiation at clonal level, we first considered its local linear approximation as the base model. The parameters of the base model, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones. Although this assumption makes inference easier, in some cases it can be too restrictive and does not take into account possible scenarios of clonal dominance. Therefore we extended the base model by introducing random effects for the clones. In this extended formulation the dynamic parameters are estimated using a tailor-made expectation maximization algorithm. Further details on the methods can be found in L. Del Core et al., (2022) <doi:10.1101/2022.05.31.494100>.
The visualization tool offers a nuanced understanding of regression dynamics, going beyond traditional per-unit interpretation of continuous variables versus categorical ones. It highlights the impact of unit changes as well as larger shifts like interquartile changes, acknowledging the distribution of empirical data. Furthermore, it generates visualizations depicting alterations in Odds Ratios for predictors across minimum, first quartile, median, third quartile, and maximum values, aiding in comprehending predictor-outcome interplay within empirical data distributions, particularly in logistic regression frameworks.
Leaf angle distribution is described by a number of functions (e.g. ellipsoidal, Beta and rotated ellipsoidal). The parameters of leaf angle distributions functions are estimated through different empirical relationship. This package includes estimations of parameters of different leaf angle distribution function, plots and evaluates leaf angle distribution functions, calculates extinction coefficients given leaf angle distribution. Reference: Wang(2007)<doi:10.1016/j.agrformet.2006.12.003>.
Allows easy access to the LEMON Graph Library set of algorithms, written in C++. See the LEMON project page at <https://lemon.cs.elte.hu/trac/lemon>. Current LEMON version is 1.3.1.
This package provides functions to identify Homozygous-by-Descent (HBD) segments associated with runs of homozygosity (ROH) and to estimate individual autozygosity (or inbreeding coefficient). HBD segments and autozygosity are assigned to multiple HBD classes with a model-based approach relying on a mixture of exponential distributions. The rate of the exponential distribution is distinct for each HBD class and defines the expected length of the HBD segments. These HBD classes are therefore related to the age of the segments (longer segments and smaller rates for recent autozygosity / recent common ancestor). The functions allow to estimate the parameters of the model (rates of the exponential distributions, mixing proportions), to estimate global and local autozygosity probabilities and to identify HBD segments with the Viterbi decoding. The method is fully described in Druet and Gautier (2017) <doi:10.1111/mec.14324> and Druet and Gautier (2022) <doi:10.1016/j.tpb.2022.03.001>.
Download and handle spatial and temporal data from the CAMELS-CL dataset (Catchment Attributes and Meteorology for Large Sample Studies, Chile) <https://camels.cr2.cl/>, developed by Alvarez-Garreton et al. (2018) <doi:10.5194/hess-22-5817-2018>. The package does not generate new data, it only facilitates direct access to the original dataset for hydrological analyses.
Provide color schemes for maps (and other graphics) based on the color palettes of several Microsoft(r) products. Forked from RColorBrewer v1.1-2.