Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits penalized generalized estimating equations to longitudinal data with high-dimensional covariates.
Run Paris Agreement Capital Transition Assessment ('PACTA') analyses on multiple loan books in a structured way. Provides access to standard PACTA metrics and additional PACTA'-related metrics for multiple loan books. Results take the form of csv files and plots and are exported to user-specified project paths.
Fits penalized linear mixed models that correct for unobserved confounding factors. plmmr infers and corrects for the presence of unobserved confounding effects such as population stratification and environmental heterogeneity. It then fits a linear model via penalized maximum likelihood. Originally designed for the multivariate analysis of single nucleotide polymorphisms (SNPs) measured in a genome-wide association study (GWAS), plmmr eliminates the need for subpopulation-specific analyses and post-analysis p-value adjustments. Functions for the appropriate processing of PLINK files are also supplied. For examples, see the package homepage. <https://pbreheny.github.io/plmmr/>.
Easy and efficient access to the API provided by Prevedere', an industry insights and predictive analytics company. Query and download indicators, models and workbenches built with Prevedere for further analysis and reporting <https://www.prevedere.com/>.
R package to query and get data out of a Pumilio sound archive system (http://ljvillanueva.github.io/pumilio/).
Visualize event logs using directed graphs, i.e. process maps. Part of the bupaR framework.
Price volatility refers to the degree of variation in series over a certain period of time. This volatility is especially noticeable in agricultural commodities, adding uncertainty for farmers, traders, and others in the agricultural supply chain. Commonly and popularly used four volatility models viz, GARCH, Glosten Jagannatan Runkle-GARCH (GJR-GARCH) model, exponentially weighted moving average (EWMA) model and Multiplicative Error Model (MEM) are selected and implemented. PWAVE, weighted ensemble model based on particle swarm optimization (PSO) is proposed to combine the forecast obtained from all the candidate models. This package has been developed using algorithm of Paul et al. <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
This package provides a toolbox for making R functions and capabilities more accessible to students and professionals from Epidemiology and Public Health related disciplines. Includes a function to report coefficients and confidence intervals from models using robust standard errors (when available), functions that expand ggplot2 plots and functions relevant for introductory papers in Epidemiology or Public Health. Please note that use of the provided data sets is for educational purposes only.
Quantification of variation in organismal color patterns as obtained from image data. Patternize defines homology between pattern positions across images either through fixed landmarks or image registration. Pattern identification is performed by categorizing the distribution of colors using RGB thresholds or image segmentation.
This function plots a contour line with a user-defined probability and tightness of fit.
This package provides a collection of phonetic algorithms including Soundex, Metaphone, NYSIIS, Caverphone, and others. The package is documented in <doi:10.18637/jss.v095.i08>.
Simulate dose regimens for pharmacokinetic-pharmacodynamic (PK-PD) models described by differential equation (DE) systems. Simulation using ADVAN-style analytical equations is also supported (Abuhelwa et al. (2015) <doi:10.1016/j.vascn.2015.03.004>).
Construct a principal surface that are two-dimensional surfaces that pass through the middle of a p-dimensional data set. They minimise the distance from the data points, and provide a nonlinear summary of data. The surfaces are nonparametric and their shape is suggested by the data. The formation of a surface is found using an iterative procedure which starts with a linear summary, typically with a principal component plane. Each successive iteration is a local average of the p-dimensional points, where an average is based on a projection of a point onto the nonlinear surface of the previous iteration. For more information on principal surfaces, see Ganey, R. (2019, "https://open.uct.ac.za/items/4e655d7d-d10c-481b-9ccc-801903aebfc8").
Bayesian toolbox for quantitative proteomics. In particular, this package provides functions to generate synthetic datasets, execute Bayesian differential analysis methods, and display results as, described in the associated article Marie Chion and Arthur Leroy (2023) <arXiv:2307.08975>.
Check if a remote computer is up. It can either just call the system ping command, or check a specified TCP port.
Implementation of penalized regression with second-generation p-values for variable selection. The algorithm can handle linear regression, GLM, and Cox regression. S3 methods print(), summary(), coef(), predict(), and plot() are available for the algorithm. Technical details can be found at Zuo et al. (2021) <doi:10.1080/00031305.2021.1946150>.
This package provides a system to plan analyses within the mental model where you have one (or more) datasets and want to run either A) the same function multiple times with different arguments, or B) multiple functions. This is appropriate when you have multiple strata (e.g. locations, age groups) that you want to apply the same function to, or you have multiple variables (e.g. exposures) that you want to apply the same statistical method to, or when you are creating the output for a report and you need multiple different tables or graphs.
Various useful functions for statisticians: describe data, plot Kaplan-Meier curves with numbers of subjects at risk, compare data sets, display spaghetti-plot, build multi-contingency tables...
This package provides high-level API and a wide range of options to create stunning, publication-quality plots effortlessly. It is built upon ggplot2 and other plotting packages, and is designed to be easy to use and to work seamlessly with ggplot2 objects. It is particularly useful for creating complex plots with multiple layers, facets, and annotations. It also provides a set of functions to create plots for specific types of data, such as Venn diagrams, alluvial diagrams, and phylogenetic trees. The package is designed to be flexible and customizable, and to work well with the ggplot2 ecosystem. The API can be found at <https://pwwang.github.io/plotthis/reference/index.html>.
This package provides simple methods to extract data portions from various objects. The relative portion size and the way the portion is selected can be chosen.
Evaluate a function across a grid of parameters. The function may be evaluated once, or many times for simulation. Parallel computing is facilitated. Utilities aim at performing analyses of power and sample size, allowing for easy search of minimum n (or min/max of any other parameter) to achieve a desired minimal level of power (or maximum of any other objective). Plotting functions are included that present the dependency of n and power in relation to further assumptions.
Simulation is a critical part of method development and assessment in quantitative genetics. PhenotypeSimulator allows for the flexible simulation of phenotypes under different models, including genetic variant and infinitesimal genetic effects (reflecting population structure) as well as non-genetic covariate effects, observational noise and additional correlation effects. The different phenotype components are combined into a final phenotype while controlling for the proportion of variance explained by each of the components. For each effect component, the number of variables, their distribution and the design of their effect across traits can be customised. For the simulation of the genetic effects, external genotype data from a number of standard software ('plink', hapgen2'/ impute2', genome', bimbam', simple text files) can be imported. The final simulated phenotypes and its components can be automatically saved into .rds or .csv files. In addition, they can be saved in formats compatible with commonly used genetic association software ('gemma', bimbam', plink', snptest', LiMMBo').
Full dynamic system to describe and forecast the spread and the severity of a developing pandemic, based on available data. These data are number of infections, hospitalizations, deaths and recoveries notified each day. The system consists of three transitions, infection-infection, infection-hospital and hospital-death/recovery. The intensities of these transitions are dynamic and estimated using non-parametric local linear estimators. The package can be used to provide forecasts and survival indicators such as the median time spent in hospital and the probability that a patient who has been in hospital for a number of days can leave it alive. Methods are described in Gámiz, Mammen, Martà nez-Miranda, and Nielsen (2024) <doi:10.48550/arXiv.2308.09918> and <doi:10.48550/arXiv.2308.09919>.
Power estimation and sample size calculation for 10X Visium Spatial Transcriptomics data to detect differential expressed genes between two conditions based on bootstrap resampling. See Shui et al. (2025) <doi:10.1371/journal.pcbi.1013293> for method details.