Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generates chronological and ordered p-plots for data vectors or vectors of p-values. The p-plot visualizes the evolution of the p-value of a significance test across the sampled data. It allows for assessing the consistency of the observed effects, for detecting the presence of potential moderator variables, and for estimating the influence of outlier values on the observed results. For non-significant findings, it can diagnose patterns indicative of underpowered study designs. The p-plot can thus either back the binary accept-vs-reject decision of common null-hypothesis significance tests, or it can qualify this decision and stimulate additional empirical work to arrive at more robust and replicable statistical inferences.
This package provides a collection of methods for commonly undertaken analytical tasks, primarily developed for Public Health Scotland (PHS) analysts, but the package is also generally useful to others working in the healthcare space, particularly since it has functions for working with Community Health Index (CHI) numbers. The package can help to make data manipulation and analysis more efficient and reproducible.
This package provides a set of Study Data Tabulation Model (SDTM) datasets constructed by modifying the pharmaversesdtm package to meet J&J Innovative Medicine's standard data structure for Clinical and Statistical Programming.
The Piece-wise exponential (Additive Mixed) Model (PAMM; Bender and others (2018) <doi: 10.1177/1471082X17748083>) is a powerful model class for the analysis of survival (or time-to-event) data, based on Generalized Additive (Mixed) Models (GA(M)Ms). It offers intuitive specification and robust estimation of complex survival models with stratified baseline hazards, random effects, time-varying effects, time-dependent covariates and cumulative effects (Bender and others (2019)), as well as support for left-truncated data as well as competing risks, recurrent events and multi-state settings. pammtools provides tidy workflow for survival analysis with PAMMs, including data simulation, transformation and other functions for data preprocessing and model post-processing as well as visualization.
Interface to the Pharmpy pharmacometrics library. The Reticulate package is used to interface Python from R.
Data sets for statistical inference modeling related to People Analytics. Contains various data sets from the book Handbook of Regression Modeling in People Analytics by Keith McNulty (2020).
Evaluate a function across a grid of parameters. The function may be evaluated once, or many times for simulation. Parallel computing is facilitated. Utilities aim at performing analyses of power and sample size, allowing for easy search of minimum n (or min/max of any other parameter) to achieve a desired minimal level of power (or maximum of any other objective). Plotting functions are included that present the dependency of n and power in relation to further assumptions.
Access a variety of PubMed data through a single, user-friendly interface, including abstracts, bibliometrics from iCite', pubtations from PubTator3', and full-text records from PMC'.
Analyzing genetic data obtained from pooled samples. This package can read in Fragment Analysis output files, process the data, and score peaks, as well as facilitate various analyses, including cluster analysis, calculation of genetic distances and diversity indices, as well as bootstrap resampling for statistical inference. Specifically tailored to handle genetic data efficiently, researchers can explore population structure, genetic differentiation, and genetic relatedness among samples. We updated some functions from Covarrubias-Pazaran et al. (2016) <doi:10.1186/s12863-016-0365-6> to allow for the use of new file formats and referenced the following to write our genetic analysis functions: Long et al. (2022) <doi:10.1038/s41598-022-04776-0>, Jost (2008) <doi:10.1111/j.1365-294x.2008.03887.x>, Nei (1973) <doi:10.1073/pnas.70.12.3321>, Foulley et al. (2006) <doi:10.1016/j.livprodsci.2005.10.021>, Chao et al. (2008) <doi:10.1111/j.1541-0420.2008.01010.x>.
Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999).
Estimate specification models for the state-dependent level of an optimal quantile/expectile forecast. Wald Tests and the test of overidentifying restrictions are implemented. Plotting of the estimated specification model is possible. The package contains two data sets with forecasts and realizations: the daily accumulated precipitation at London, UK from the high-resolution model of the European Centre for Medium-Range Weather Forecasts (ECMWF, <https://www.ecmwf.int/>) and GDP growth Greenbook data by the US Federal Reserve. See Schmidt, Katzfuss and Gneiting (2015) <arXiv:1506.01917> for more details on the identification and estimation of a directive behind a point forecast.
Includes functions and data used in the book "Presenting Statistical Results Effectively", Andersen and Armstrong (2022, ISBN: 978-1446269800). Several functions aid in data visualization - creating compact letter displays for simple slopes, kernel density estimates with normal density overlay. Other functions aid in post-model evaluation heatmap fit statistics for binary predictors, several variable importance measures, compact letter displays and simple-slope calculation. Finally, the package makes available the example datasets used in the book.
Supports analysis of aerobiological data. Available features include determination of pollen season limits, replacement of outliers (Kasprzyk and Walanus (2014) <doi:10.1007/s10453-014-9332-8>), calculation of growing degree days (Baskerville and Emin (1969) <doi:10.2307/1933912>), and determination of the base temperature for growing degree days (Yang et al. (1995) <doi:10.1016/0168-1923(94)02185-M).
For working with the Prevision.io AI model management platform's API <https://prevision.io/>.
This package provides a common problem faced by journal reviewers and authors is the question of whether the results of a replication study are consistent with the original published study. One solution to this problem is to examine the effect size from the original study and generate the range of effect sizes that could reasonably be obtained (due to random sampling) in a replication attempt (i.e., calculate a prediction interval). This package has functions that calculate the prediction interval for the correlation (i.e., r), standardized mean difference (i.e., d-value), and mean.
Generates Weibull-parameterized estimates of phenology for any percentile of a distribution using the framework established in Cooke (1979) <doi:10.1093/biomet/66.2.367>. Extensive testing against other estimators suggest the weib_percentile() function is especially useful in generating more accurate and less biased estimates of onset and offset (Belitz et al. 2020) <doi:10.1111/2041-210X.13448>. Non-parametric bootstrapping can be used to generate confidence intervals around those estimates, although this is computationally expensive. Additionally, this package offers an easy way to perform non-parametric bootstrapping to generate confidence intervals for quantile estimates, mean estimates, or any statistical function of interest.
Collect marketing data from Pinterest Ads using the Windsor.ai API <https://windsor.ai/api-fields/>. Use four spaces when indenting paragraphs within the Description.
The main function, plot_mm(), is used for (gg)plotting output from mixture models, including both densities and overlaying mixture weight component curves from the fit models in line with the tidy principles. The package includes several additional functions for added plot customization. Supported model objects include: mixtools', EMCluster', and flexmix', with more from each in active dev. Supported mixture model specifications include mixtures of univariate Gaussians, multivariate Gaussians, Gammas, logistic regressions, linear regressions, and Poisson regressions.
Conduct power analyses and inference of marginal effects. Uses plug-in estimation and influence functions to perform robust inference, optionally leveraging historical data to increase precision with prognostic covariate adjustment. The methods are described in Højbjerre-Frandsen et al. (2025) <doi:10.48550/arXiv.2503.22284>.
Makes it easy to push data to Power BI using R and the Power BI REST APIs (see <https://docs.microsoft.com/en-us/rest/api/power-bi/>). A set of functions for turning data frames into Power BI datasets and refreshing these datasets are provided. Administrative tasks such as monitoring refresh statuses and pulling metadata about workspaces and users are also supported.
Conduct dsep tests (piecewise SEM) of a directed, or mixed, acyclic graph without latent variables (but possibly with implicitly marginalized or conditioned latent variables that create dependent errors) based on linear, generalized linear, or additive modelswith or without a nesting structure for the data. Also included are functions to do desp tests step-by-step,exploratory path analysis, and Monte Carlo X2 probabilities. This package accompanies Shipley, B, (2026).Cause and Correlation in Biology: A User's Guide to Path Analysis, StructuralEquations and Causal Inference (3rd edition). Cambridge University Press.
An R implementation of the cross-platform, language-independent "port4me" algorithm (<https://github.com/HenrikBengtsson/port4me>), which (1) finds a free Transmission Control Protocol ('TCP') port in [1024,65535] that the user can open, (2) is designed to work in multi-user environments, (3), gives different users, different ports, (4) gives the user the same port over time with high probability, (5) gives different ports for different software tools, and (6) requires no configuration.
This package provides functions to assist in diagnostics and plotting during the causal inference modeling process. Supplements the bartCause package.
This package implements moving-blocks bootstrap and extended tapered-blocks bootstrap, as well as smooth versions of each, for quantile regression in time series. This package accompanies the paper: Gregory, K. B., Lahiri, S. N., & Nordman, D. J. (2018). A smooth block bootstrap for quantile regression with time series. The Annals of Statistics, 46(3), 1138-1166.