Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs automated morphological character partitioning for phylogenetic analyses and analyze macroevolutionary parameter outputs from clock (time-calibrated) Bayesian inference analyses, following concepts introduced by Simões and Pierce (2021) <doi:10.1038/s41559-021-01532-x>.
The production of certified reference materials (CRMs) requires various statistical tests depending on the task and recorded data to ensure that reported values of CRMs are appropriate. Often these tests are performed according to the procedures described in ISO GUIDE 35:2017'. The eCerto package contains a Shiny app which provides functionality to load, process, report and backup data recorded during CRM production and facilitates following the recommended procedures. It is described in Lisec et al (2023) <doi:10.1007/s00216-023-05099-3> and can also be accessed online <https://apps.bam.de/shn00/eCerto/> without package installation.
Empirical Bayes thresholding using the methods developed by I. M. Johnstone and B. W. Silverman. The basic problem is to estimate a mean vector given a vector of observations of the mean vector plus white noise, taking advantage of possible sparsity in the mean vector. Within a Bayesian formulation, the elements of the mean vector are modelled as having, independently, a distribution that is a mixture of an atom of probability at zero and a suitable heavy-tailed distribution. The mixing parameter can be estimated by a marginal maximum likelihood approach. This leads to an adaptive thresholding approach on the original data. Extensions of the basic method, in particular to wavelet thresholding, are also implemented within the package.
This package implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Allenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Allenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.
Computes temporal trends in environmental suitability obtained from ecological niche models, based on a set of species presence point coordinates and predictor variables.
This is a collection of assorted functions and examples collected from various projects. Currently we have functionalities for simplifying overlapping time intervals, Charlson comorbidity score constructors for Danish data, getting frequency for multiple variables, getting standardized output from logistic and log-linear regressions, sibling design linear regression functionalities a method for calculating the confidence intervals for functions of parameters from a GLM, Bayes equivalent for hypothesis testing with asymptotic Bayes factor, and several help functions for generalized random forest analysis using grf'.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
Estimating individual-level covariate-outcome associations using aggregate data ("ecological inference") or a combination of aggregate and individual-level data ("hierarchical related regression").
This package provides convenience functions for researching experiences including user, customer, patient, employee, and other human experiences. It provides a suite of tools to simplify data exploration such as benchmarking, comparing groups, and checking for differences. The outputs translate statistical approaches in applied experience research to human readable output.
Estimates RxC (R by C) vote transfer matrices (ecological contingency tables) from aggregate data by simultaneously minimizing Euclidean row-standardized unit-to-global distances. Acknowledgements: The authors wish to thank Generalitat Valenciana, Consellerà a de Educación, Cultura, Universidades y Empleo (grant CIAICO/2023/031) for supporting this research.
This package provides an interface to e-Stat API, the one-stop service for official statistics of the Japanese government.
Calculate cutoff values for model fit measures used in structural equation modeling (SEM) by simulating and testing data sets (cf. Hu & Bentler, 1999 <doi:10.1080/10705519909540118>) with the same parameters (population model, number of observations, etc.) as the model under consideration.
This package provides tools for training and practicing epidemiologists including methods for two-way and multi-way contingency tables.
Estimation of epidemiological parameters with Laplacian-P-splines following the methodology of Gressani et al. (2022) <doi:10.1371/journal.pcbi.1010618>.
Este paquete pretende apoyar el proceso enseñanza-aprendizaje de estadà stica descriptiva e inferencial. Las funciones contenidas en el paquete estadistica cubren los conceptos básicos estudiados en un curso introductorio. Muchos conceptos son ilustrados con gráficos dinámicos o web apps para facilitar su comprensión. This package aims to help the teaching-learning process of descriptive and inferential statistics. The functions contained in the package estadistica cover the basic concepts studied in a statistics introductory course. Many concepts are illustrated with dynamic graphs or web apps to make the understanding easier. See: Esteban et al. (2005, ISBN: 9788497323741), Newbold et al.(2019, ISBN:9781292315034 ), Murgui et al. (2002, ISBN:9788484424673) .
Downloads a satellite image via ESRI and maptiles (these are originally from a variety of aerial photography sources), translates the image into a perceptually uniform color space, runs one of a few different clustering algorithms on the colors in the image searching for a user-supplied number of colors, and returns the resulting color palette.
Generation of bioclimatic rasters that are complementary to the typical 19 bioclim variables.
Because fungicide resistance is an important phenotypic trait for fungi and oomycetes, it is necessary to have a standardized method of statistically analyzing the Effective Concentration (EC) values. This package is designed for those who are not terribly familiar with R to be able to analyze and plot an entire set of isolates using the drc package.
Work with Ecological Metadata Language ('EML') files. EML is a widely used metadata standard in the ecological and environmental sciences, described in Jones et al. (2006), <doi:10.1146/annurev.ecolsys.37.091305.110031>.
This package provides basic distribution functions for a mixture model of a Gaussian and exponential distribution.
Fit and sample from the ensemble model described in Spence et al (2018): "A general framework for combining ecosystem models"<doi:10.1111/faf.12310>.
This package provides a collection of convenient functions to facilitate common tasks in exploratory data analysis. Some common tasks include generating summary tables of variables, displaying tables as a flextable or a kable and visualising variables using ggplot2'. Labels stating the source file with run time can be easily generated for annotation in tables and plots.
Read raw EEM data and prepares them for further analysis.
Randomly generate a wide range of interaction networks with specified size, average degree, modularity, and topological structure. Sample nodes and links from within simulated networks randomly, by degree, by module, or by abundance. Simulations and sampling routines are implemented in FORTRAN', providing efficient generation times even for large networks. Basic visualization methods also included. Algorithms implemented here are described in de Aguiar et al. (2017) <arXiv:1708.01242>.