Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
Authentication can be the most difficult part about working with a new API. ibmAcousticR facilitates making a connection to the IBM Acoustic email campaign management API and executing various queries. The IBM Acoustic API documentation is available at <https://developer.ibm.com/customer-engagement/docs/>. This package is not supported by IBM'.
This package provides a runtime type system, allowing users to define and implement interfaces, enums, typed data.frame/data.table, as well as typed functions. This package enables stricter type checking and validation, improving code structure, robustness and reliability.
This package implements some item response models for multiple ratings, including the hierarchical rater model, conditional maximum likelihood estimation of linear logistic partial credit model and a wrapper function to the commercial FACETS program. See Robitzsch and Steinfeld (2018) for a description of the functionality of the package. See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>) for an overview of modeling alternatives.
Deconvolution of mixed tumour profiles into normal and cancer for each patient, using the ISOpure algorithm in Quon et al. Genome Medicine, 2013 5:29. Deconvolution requires mixed tumour profiles and a set of unmatched "basis" normal profiles.
This package provides a collection of useful functions and datasets for the Data Science Course at IBAW.
This package produces a publication-ready table that includes all effect estimates necessary for full reporting effect modification and interaction analysis as recommended by Knol and Vanderweele (2012) [<doi:10.1093/ije/dyr218>]. It also estimates confidence interval for the trio of additive interaction measures using the delta method (see Hosmer and Lemeshow (1992), [<doi:10.1097/00001648-199209000-00012>]), variance recovery method (see Zou (2008), [<doi:10.1093/aje/kwn104>]), or percentile bootstrapping (see Assmann et al. (1996), [<doi:10.1097/00001648-199605000-00012>]).
Estimate the orientation of an inertial measurement unit (IMU) with a 3-axis accelerometer and a 3-axis gyroscope using a complementary filter. imuf takes an IMU's accelerometer and gyroscope readings, time duration, its initial orientation, and a gain factor as inputs, and returns an estimate of the IMU's final orientation.
This package implements a wide range of metrics for measuring glucose control and glucose variability based on continuous glucose monitoring data. The list of implemented metrics is summarized in Rodbard (2009) <doi:10.1089/dia.2009.0015>. Additional visualization tools include time-series plots, lasagna plots and ambulatory glucose profile report.
Estimate test-retest reliability for complex sampling strategies and extract variances using IntraClass Effect Decomposition. Developed by Brandmaier et al. (2018) "Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)" <doi:10.7554/eLife.35718> Also includes functions to simulate data based on sampling strategy. Unofficial version release name: "Good work squirrels".
The iterLap (iterated Laplace approximation) algorithm approximates a general (possibly non-normalized) probability density on R^p, by repeated Laplace approximations to the difference between current approximation and true density (on log scale). The final approximation is a mixture of multivariate normal distributions and might be used for example as a proposal distribution for importance sampling (eg in Bayesian applications). The algorithm can be seen as a computational generalization of the Laplace approximation suitable for skew or multimodal densities.
This package provides tools for assessment and quantification of individual identity information in animal signals. This package accompanies a research article by Linhart et al. (2019) <doi:10.1101/546143>: "Measuring individual identity information in animal signals: Overview and performance of available identity metrics".
Versatile tools and data for graph matching analysis with various forms of prior information that supports working with igraph objects, matrix objects, or lists of either.
Merges and downloads SPSS data from different International Large-Scale Assessments (ILSA), including: Trends in International Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study (PIRLS), and others.
This package provides a collection of several utility functions related to binary incomplete block designs. Contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. Contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.
This package provides a system for submitting multiple IP information queries to IP2Location.io'รข s IP Geolocation API and storing the resulting data in a dataframe. You provide a vector of IP addresses and your IP2Location.io API key. The package returns a dataframe with one row per IP address and a column for each available data field (data fields not included in your API plan will contain NAs). This is the second submission of the package to CRAN.
The digits of the old version (before 2000 year) of Chinese ID Card Number is 15, this package aims to update to the current version of 18 digits. Besides, this package can help check whether the given ID is right or not.
Insurance datasets, which are often used in claims severity and claims frequency modelling. It helps testing new regression models in those problems, such as GLM, GLMM, HGLM, non-linear mixed models etc. Most of the data sets are applied in the project "Mixed models in ratemaking" supported by grant NN 111461540 from Polish National Science Center.
Compute onestep and multistep time series forecasts for machine learning models.
Collection of tools to automate the processing of data collected though the IDEA4 method (see Zahm et al. (2018) <doi:10.1051/cagri/2019004> ). Starting from the original data collecting files this packages provides functions to compute IDEA indicators, draw modern and aesthetic plots, and produce a wide range of reporting materials.
Empirical Bayes variable selection via ICM/M algorithm for normal, binary logistic, and Cox's regression. The basic problem is to fit high-dimensional regression which sparse coefficients. This package allows incorporating the Ising prior to capture structure of predictors in the modeling process. More information can be found in the papers listed in the URL below.
Generalised linear models via the iteratively reweighted least squares algorithm. The functions perform logistic, Poisson and Gamma regression (ISBN:9780412317606), either for a single model or many regression models in a column-wise fashion.
Fits a double logistic function to NDVI time series and calculates instantaneous rate of green (IRG) according to methods described in Bischoff et al. (2012) <doi:10.1086/667590>.
This package provides tools for passing messages between R processes. Shiny examples are provided showing how to perform useful tasks such as: updating reactive values from within a future, progress bars for long running async tasks, and interrupting async tasks based on user input.