Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Access to the Greek New Testament (27 books) and the Old Testament (39 books) and allow users to do textual analysis on the data. The New and Old Testament have been provided in their original languages, Greek and Hebrew, respectively. Additionally, the Revised American Standard Bible is also provided for users who'd rather use a wordâ forâ word modern English translation.
We present a method based on filtering algorithms to estimate the parameters of linear, i.e. the coefficients and the variance of the error term. The proposed algorithms make use of Particle Filters following Ristic, B., Arulampalam, S., Gordon, N. (2004, ISBN: 158053631X) resampling methods. Parameters of logistic regression models are also estimated using an evolutionary particle filter method.
Create maps made of lines. The package contains one function: linemap(). linemap() displays a map made of lines using a raster or gridded data.
Effectively simulates the discretization process inherent to Likert scales while minimizing distortion. It converts continuous latent variables into ordinal categories to generate Likert scale item responses. Particularly useful for accurately modeling and analyzing survey data that use Likert scales, especially when applying statistical techniques that require metric data.
Calculates landscape metrics for categorical landscape patterns in a tidy workflow. landscapemetrics reimplements the most common metrics from FRAGSTATS (<https://www.fragstats.org/>) and new ones from the current literature on landscape metrics. This package supports terra SpatRaster objects as input arguments. It further provides utility functions to visualize patches, select metrics and building blocks to develop new metrics.
This package provides a largish collection of example datasets, including several classics. Many of these datasets are well suited for regression, classification, and visualization.
Navigating the shift of clinical laboratory data from primary everyday clinical use to secondary research purposes presents a significant challenge. Given the substantial time and expertise required for lab data pre-processing and cleaning and the lack of all-in-one tools tailored for this need, we developed our algorithm lab2clean as an open-source R-package. lab2clean package is set to automate and standardize the intricate process of cleaning clinical laboratory results. With a keen focus on improving the data quality of laboratory result values and units, our goal is to equip researchers with a straightforward, plug-and-play tool, making it smoother for them to unlock the true potential of clinical laboratory data in clinical research and clinical machine learning (ML) model development. Functions to clean & validate result values (Version 1.0) are described in detail in Zayed et al. (2024) <doi:10.1186/s12911-024-02652-7>. Functions to standardize & harmonize result units (added in Version 2.0) are described in detail in Zayed et al. (2025) <doi:10.1016/j.ijmedinf.2025.106131>.
Compute lifetime attributable risk of radiation-induced cancer reveals that it can be helpful with enhancement of the flexibility in research with fast calculation and various options. Important reference papers include Berrington de Gonzalez et al. (2012) <doi:10.1088/0952-4746/32/3/205>, National Research Council (2006, ISBN:978-0-309-09156-5).
User-friendly package for reporting replicability-analysis methods, affixed to meta-analyses summary. The replicability-analysis output provides an assessment of the investigated intervention, where it offers quantification of effect replicability and assessment of the consistency of findings. - Replicability-analysis for fixed-effects and random-effect meta analysis: - r(u)-value; - lower bounds on the number of studies with replicated positive and\or negative effect; - Allows detecting inconsistency of signals; - forest plots with the summary of replicability analysis results; - Allows Replicability-analysis with or without the common-effect assumption.
This package provides an interface to MetaPost (Hobby, 1998) <http://www.tug.org/docs/metapost/mpman.pdf>. There are functions to generate an R description of a MetaPost curve, functions to generate MetaPost code from an R description, functions to process MetaPost code, and functions to read solved MetaPost paths back into R.
Measure quality of your tests. muttest introduces small changes (mutations) to your code and runs your tests to check if they catch the changes. If they do, your tests are good. If not, your assertions are not specific enough. muttest gives you percent score of how often your tests catch the changes.
Visualization of multi-dimensional data arising in multi-objective optimization, including plots of the empirical attainment function (EAF), M. López-Ibáñez, L. Paquete, and T. Stützle (2010) <doi:10.1007/978-3-642-02538-9_9>, and symmetric Vorob'ev expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others.
This is a shiny module that presents a file picker user interface to get an Excel file name, and reads the Excel sheets using readxl package and returns the resulting sheet(s) as a vector and data in dataframe(s).
Two functions for simulating the solution of initial value problems of the form g'(x) = G(x, g) with g(x0) = g0. One is an acceptance-rejection method. The other is a method based on the Mean Value Theorem.
This package provides a user-friendly interface for the construction of Makefiles'.
This package implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit -- an estimated effect and its associated squared standard error -- and fits a nonparametric, shape-constrained mixture separately on two latent parameters. It reports local false discovery rates (lfdr) and local false sign rates (lfsr). Manuscript describing algorithm of MixTwice: Zheng et al(2021) <doi: 10.1093/bioinformatics/btab162>.
Simplifies Monte Carlo simulation studies by automatically setting up loops to run over parameter grids and parallelising the Monte Carlo repetitions. It also generates LaTeX tables.
An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called Magma and MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2023) <https://jmlr.org/papers/v24/20-1321.html>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). MagmaClust is a generalisation of Magma where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.
Monolix is a tool for running mixed effects model using saem'. This tool allows you to convert Monolix models to rxode2 (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) using the form compatible with nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>). If available, the rxode2 model will read in the Monolix data and compare the simulation for the population model individual model and residual model to immediately show how well the translation is performing. This saves the model development time for people who are creating an rxode2 model manually. Additionally, this package reads in all the information to allow simulation with uncertainty (that is the number of observations, the number of subjects, and the covariance matrix) with a rxode2 model. This is complementary to the babelmixr2 package that translates nlmixr2 models to Monolix and can convert the objects converted from monolix2rx to a full nlmixr2 fit. While not required, you can get/install the lixoftConnectors package in the Monolix installation, as described at the following url <https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization>. When lixoftConnectors is available, Monolix can be used to load its model library instead manually setting up text files (which only works with old versions of Monolix').
Large collection of multilabel datasets along with the functions needed to export them to several formats, to make partitions, and to obtain bibliographic information.
Addons for the mice package to perform multiple imputation using chained equations with two-level data. Includes imputation methods dedicated to sporadically and systematically missing values. Imputation of continuous, binary or count variables are available. Following the recommendations of Audigier, V. et al (2018) <doi:10.1214/18-STS646>, the choice of the imputation method for each variable can be facilitated by a default choice tuned according to the structure of the incomplete dataset. Allows parallel calculation and overimputation for mice'.
Estimate parameters of linear regression and logistic regression with missing covariates with missing data, perform model selection and prediction, using EM-type algorithms. Jiang W., Josse J., Lavielle M., TraumaBase Group (2020) <doi:10.1016/j.csda.2019.106907>.
Approximate node interaction parameters of Markov Random Fields graphical networks. Models can incorporate additional covariates, allowing users to estimate how interactions between nodes in the graph are predicted to change across covariate gradients. The general methods implemented in this package are described in Clark et al. (2018) <doi:10.1002/ecy.2221>.
This plot integrates annotation into a manhattan plot. The plot is implemented as a heatmap, which is binned using -log10(p-value) and chromosome position. Annotation currently supported is minor allele frequency and gene function high impact variants.