Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Mainly for maximum likelihood estimation of nonparametric and semiparametric mixture models, but can also be used for fitting finite mixtures. The algorithms are developed in Wang (2007) <doi:10.1111/j.1467-9868.2007.00583.x> and Wang (2010) <doi:10.1007/s11222-009-9117-z>.
An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resources) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a web-based data viewer and web access, please see <https://power.larc.nasa.gov/>.
This comprehensive toolkit provide a consistent and extensible framework for working with missing values in vectors. The companion package tidyimpute provides similar functionality for list-like and table-like structures). Functions exist for detection, removal, replacement, imputation, recollection, etc. of NAs'.
This package provides a number series generator that creates number series items based on cognitive models.
This package provides a comprehensive toolkit for calculating and visualizing Nitrogen Use Efficiency (NUE) indicators in agricultural research. The package implements 23 parameters categorized into fertilizer-based, plant-based, soil-based, isotope-based, ecology-based, and system-based indicators based on Congreves et al. (2021) <doi:10.3389/fpls.2021.637108>. Key features include vectorized calculations for paired-plot experimental designs, batch processing capabilities for handling large datasets, and built-in visualization tools using ggplot2'. Designed to streamline the workflow from raw agronomic data to publication-ready metrics and plots.
Fast functions implemented in C++ via Rcpp to support the NeuroAnatomy Toolbox ('nat') ecosystem. These functions provide large speed-ups for basic manipulation of neuronal skeletons over pure R functions found in the nat package. The expectation is that end users will not use this package directly, but instead the nat package will automatically use routines from this package when it is available to enable large performance gains.
The nflverse is a set of packages dedicated to data of the National Football League. This package is designed to make it easy to install and load multiple nflverse packages in a single step. Learn more about the nflverse at <https://nflverse.nflverse.com/>.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Acquires and synthesizes soil carbon fluxes at sites located in the National Ecological Observatory Network (NEON). Provides flux estimates and associated uncertainty as well as key environmental measurements (soil water, temperature, CO2 concentration) that are used to compute soil fluxes.
Calculating the net reclassification improvement (NRI) for risk prediction models with time to event and binary data.
The Nordklim dataset 1.0 is a unique and useful achievement for climate analysis. It includes observations of twelve different climate elements from more than 100 stations in the Nordic region, in time span over 100 years. The project contractors were NORDKLIM/NORDMET on behalf of the National meteorological services in Denmark (DMI), Finland (FMI), Iceland (VI), Norway (DNMI) and Sweden (SMHI).
The aim of neo2R is to provide simple and low level connectors for querying neo4j graph databases (<https://neo4j.com/>). The objects returned by the query functions are either lists or data.frames with very few post-processing. It allows fast processing of queries returning many records. And it let the user handle post-processing according to the data model and his needs.
This package provides a tool for drawing sassy UML (Unified Modeling Language) diagrams based on a simple syntax, see <https://www.nomnoml.com>. Supports styling, R Markdown and exporting diagrams in the PNG format. Note: you need a chromium based browser installed on your system.
Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data preprocessing applications. Method is detailed in: Hejblum, Alkhassimn, Gottardo, Caron & Thiebaut (2019) <doi: 10.1214/18-AOAS1209>.
Includes five particle filtering algorithms for use with state space models in the nimble system: Auxiliary', Bootstrap', Ensemble Kalman filter', Iterated Filtering 2', and Liu-West', as described in Michaud et al. (2021), <doi:10.18637/jss.v100.i03>. A full User Manual is available at <https://r-nimble.org>.
This package provides a model library for nlmixr2'. The models include (and plan to include) pharmacokinetic, pharmacodynamic, and disease models used in pharmacometrics. Where applicable, references for each model are included in the meta-data for each individual model. The package also includes model composition and modification functions to make model updates easier.
NEON data packages can be accessed through the NEON Data Portal <https://www.neonscience.org> or through the NEON Data API (see <https://data.neonscience.org/data-api> for documentation). Data delivered from the Data Portal are provided as monthly zip files packaged within a parent zip file, while individual files can be accessed from the API. This package provides tools that aid in discovering, downloading, and reformatting data prior to use in analyses. This includes downloading data via the API, merging data tables by type, and converting formats. For more information, see the readme file at <https://github.com/NEONScience/NEON-utilities>.
Neural decoding is method of analyzing neural data that uses a pattern classifiers to predict experimental conditions based on neural activity. NeuroDecodeR is a system of objects that makes it easy to run neural decoding analyses. For more information on neural decoding see Meyers & Kreiman (2011) <doi:10.7551/mitpress/8404.003.0024>.
Indices, heuristics, simulations and strategies to help determine the number of factors/components to retain in exploratory factor analysis and principal component analysis.
This package provides nearest-neighbors matching and analysis of case-control data. Cui, Z., Marder, E. P., Click, E. S., Hoekstra, R. M., & Bruce, B. B. (2022) <doi:10.1097/EDE.0000000000001504>.
Validate, format and compare identification numbers used in Brazil. These numbers are used to identify individuals (CPF), vehicles (RENAVAN), companies (CNPJ) and etc. Functions to format, validate and compare these numbers have been implemented in a vectorized way in order to speed up validations and comparisons in big datasets.
Models for non-linear time series analysis and causality detection. The main functionalities of this package consist of an implementation of the classical causality test (C.W.J.Granger 1980) <doi:10.1016/0165-1889(80)90069-X>, and a non-linear version of it based on feed-forward neural networks. This package contains also an implementation of the Transfer Entropy <doi:10.1103/PhysRevLett.85.461>, and the continuous Transfer Entropy using an approximation based on the k-nearest neighbors <doi:10.1103/PhysRevE.69.066138>. There are also some other useful tools, like the VARNN (Vector Auto-Regressive Neural Network) prediction model, the Augmented test of stationarity, and the discrete and continuous entropy and mutual information.
Semissupervised model for geographical document classification (Watanabe 2018) <doi:10.1080/21670811.2017.1293487>. This package currently contains seed dictionaries in English, German, French, Spanish, Italian, Russian, Hebrew, Arabic, Turkish, Japanese and Chinese (Simplified and Traditional).
This package provides functions to access and download data from various NASA APIs <https://api.nasa.gov/#browseAPI>, including: Astronomy Picture of the Day (APOD), Mars Rover Photos, Earth Polychromatic Imaging Camera (EPIC), Near Earth Object Web Service (NeoWs), Earth Observatory Natural Event Tracker (EONET), and NASA Earthdata CMR Search. Most endpoints require a NASA API key for access. Data is retrieved, cleaned for analysis, and returned in a dataframe-friendly format.