Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Modern software often poorly support older file formats. This package intends to handle many file formats that were native to the antiquated Commodore Amiga machine. This package focuses on file types from the older Amiga operating systems (<= 3.0). It will read and write specific file formats and coerces them into more contemporary data.
Existing adaptive design methods in clinical trials. The package includes power, stopping boundaries (sample size) calculation functions for two-group group sequential designs, adaptive design with coprimary endpoints, biomarker-informed adaptive design, etc.
Developer oriented utility functions designed to be used as the building blocks of R packages that work with ArcGIS Location Services. It provides functionality for authorization, Esri JSON construction and parsing, as well as other utilities pertaining to geometry and Esri type conversions. To support ArcGIS Pro users, authorization can be done via arcgisbinding'. Installation instructions for arcgisbinding can be found at <https://developers.arcgis.com/r-bridge/installation/>.
This package provides a recent method proposed by Yi and Chen (2023) <doi:10.1177/09622802221146308> is used to estimate the average treatment effects using noisy data containing both measurement error and spurious variables. The package AteMeVs contains a set of functions that provide a step-by-step estimation procedure, including the correction of the measurement error effects, variable selection for building the model used to estimate the propensity scores, and estimation of the average treatment effects. The functions contain multiple options for users to implement, including different ways to correct for the measurement error effects, distinct choices of penalty functions to do variable selection, and various regression models to characterize propensity scores.
Parsing R code is key to build tools such as linters and stylers. This package provides a binding to the Rust crate ast-grep so that one can parse and explore R code.
Stepwise Uncertainty Reduction criterion and algorithm for sequentially learning a Gaussian Process Classifier as described in Menz et al. (2025).
Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use grid's "affine transformation" feature to render illustrated flat surfaces.
Programming vaccine specific Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R'. Flat model is followed as per Center for Biologics Evaluation and Research (CBER) guidelines for creating vaccine specific domains. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team (2021), <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>). The package is an extension package of the admiral package.
The actfts package provides tools for performing autocorrelation analysis of time series data. It includes functions to compute and visualize the autocorrelation function (ACF) and the partial autocorrelation function (PACF). Additionally, it performs the Dickey-Fuller, KPSS, and Phillips-Perron unit root tests to assess the stationarity of time series. Theoretical foundations are based on Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Box and Jenkins (1976) <isbn:978-0-8162-1234-2>, and Box and Pierce (1970) <doi:10.1080/01621459.1970.10481180>. Statistical methods are also drawn from Kolmogorov (1933) <doi:10.1007/BF00993594>, Kwiatkowski et al. (1992) <doi:10.1016/0304-4076(92)90104-Y>, and Ljung and Box (1978) <doi:10.1093/biomet/65.2.297>. The package integrates functions from forecast (Hyndman & Khandakar, 2008) <https://CRAN.R-project.org/package=forecast>, tseries (Trapletti & Hornik, 2020) <https://CRAN.R-project.org/package=tseries>, xts (Ryan & Ulrich, 2020) <https://CRAN.R-project.org/package=xts>, and stats (R Core Team, 2023) <https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html>. Additionally, it provides visualization tools via plotly (Sievert, 2020) <https://CRAN.R-project.org/package=plotly> and reactable (Glaz, 2023) <https://CRAN.R-project.org/package=reactable>. The package also incorporates macroeconomic datasets from the U.S. Bureau of Economic Analysis: Disposable Personal Income (DPI) <https://fred.stlouisfed.org/series/DPI>, Gross Domestic Product (GDP) <https://fred.stlouisfed.org/series/GDP>, and Personal Consumption Expenditures (PCEC) <https://fred.stlouisfed.org/series/PCEC>.
Set of functions for analyzing Atomic Force Microscope (AFM) force-distance curves. It allows to obtain the contact and unbinding points, perform the baseline correction, estimate the Young's modulus, fit up to two exponential decay function to a stress-relaxation / creep experiment, obtain adhesion energies. These operations can be done either over a single F-d curve or over a set of F-d curves in batch mode.
This package provides functions to process minute level actigraphy-measured activity counts data and extract commonly used physical activity volume and fragmentation metrics.
Several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case (irregular data: ACM 761, regular data: ACM 760) and univariate case (ACM 433 and ACM 697). Linear interpolation of irregular gridded data is also covered by reusing D. J. Renkas triangulation code which is part of Akimas Fortran code. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license.
This package provides a collection of Japanese text processing tools for filling Japanese iteration marks, Japanese character type conversions, segmentation by phrase, and text normalization which is based on rules for the Sudachi morphological analyzer and the NEologd (Neologism dictionary for MeCab'). These features are specific to Japanese and are not implemented in ICU (International Components for Unicode).
Tracking accrual in clinical trials is important for trial success. If accrual is too slow, the trial will take too long and be too expensive. If accrual is much faster than expected, time sensitive tasks such as the writing of statistical analysis plans might need to be rushed. accrualPlot provides functions to aid the tracking of accrual and predict when a trial will reach it's intended sample size.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
Adjusts output of cranlogs package to account for CRAN'-wide daily automated downloads and re-downloads caused by package updates.
Aids the programming of Clinical Data Standards Interchange Consortium (CDISC) compliant Ophthalmology Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>).
This package provides a tool that "multiply imputes" missing data in a single cross-section (such as a survey), from a time series (like variables collected for each year in a country), or from a time-series-cross-sectional data set (such as collected by years for each of several countries). Amelia II implements our bootstrapping-based algorithm that gives essentially the same answers as the standard IP or EMis approaches, is usually considerably faster than existing approaches and can handle many more variables. Unlike Amelia I and other statistically rigorous imputation software, it virtually never crashes (but please let us know if you find to the contrary!). The program also generalizes existing approaches by allowing for trends in time series across observations within a cross-sectional unit, as well as priors that allow experts to incorporate beliefs they have about the values of missing cells in their data. Amelia II also includes useful diagnostics of the fit of multiple imputation models. The program works from the R command line or via a graphical user interface that does not require users to know R.
Static code compilation of a shiny app given an R function (into ui.R and server.R files or into a shiny app object). See examples at <https://github.com/alekrutkowski/autoshiny>.
This package provides a method for quantifying resilience after a stress event. A set of functions calculate the area of resilience that is created by the departure of baseline y (i.e., robustness) and the time taken x to return to baseline (i.e., rapidity) after a stress event using the Cartesian coordinates of the data. This package has the capability to calculate areas of resilience, growth, and cases in which resilience is not achieved (e.g., diminished performance without return to baseline).
Different tools for managing databases of airborne particles, elaborating the main calculations and visualization of results. In a first step, data are checked using tools for quality control and all missing gaps are completed. Then, the main parameters of the pollen season are calculated and represented graphically. Multiple graphical tools are available: pollen calendars, phenological plots, time series, tendencies, interactive plots, abundance plots...
The AHP method (Analytic Hierarchy Process) is a multi-criteria decision-making method addressing choice and outranking problems. The method enables to perform the analysis of alternatives in each type of criterion and then provides a global performance of each alternative in the decision context. The main difference of this package is the possibility of evaluating the alternatives using quantitative data, by numerical representation, and qualitative data, using the Saaty scale, providing preference relation between variables by a pairwise evaluation.
This package provides convenience functions for programming with magrittr pipes. Conditional pipes, a string prefixer and a function to pipe the given object into a specific argument given by character name are currently supported. It is named after the dadaist Hans Arp, a friend of Rene Magritte.
Flat text files provide a robust, compressible, and portable way to store tables from databases. This package provides convenient functions for exporting tables from relational database connections into compressed text files and streaming those text files back into a database without requiring the whole table to fit in working memory.