Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Designed to automate the calculation of Emergency Medical Service (EMS) quality metrics, nemsqar implements measures defined by the National EMS Quality Alliance (NEMSQA). By providing reliable, evidence-based quality assessments, the package supports EMS agencies, healthcare providers, and researchers in evaluating and improving patient outcomes. Users can find details on all approved NEMSQA measures at <https://www.nemsqa.org/measures>. Full technical specifications, including documentation and pseudocode used to develop nemsqar', are available on the NEMSQA website after creating a user profile at <https://www.nemsqa.org>.
Calculates network measures commonly used in Network Medicine. Measures such as the Largest Connected Component, the Relative Largest Connected Component, Proximity and Separation are calculated along with their statistical significance. Significance can be computed both using a degree-preserving randomization and non-degree preserving.
Fetch data from the National Oceanic and Atmospheric Administration Climate Data Online (NOAA CDO) <https://www.ncdc.noaa.gov/cdo-web/webservices/v2> API including daily, monthly, and yearly climate summaries, radar data, climatological averages, precipitation data, annual summaries, storm events, and agricultural meteorology.
This package provides methods to reduce confounding bias from unmeasured confounders in observational studies of vaccine efficacy using negative control outcomes.
This package provides a near drop-in replacement for base::Sys.sleep() that allows more types of input to produce delays in the execution of code and can silence/prevent typical sources of error.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
This package performs nonparametric estimation in mixture cure models when the cure status is partially known. For details, see Safari et al (2021) <doi:10.1002/bimj.202100156>, Safari et al (2022) <doi:10.1177/09622802221115880> and Safari et al (2023) <doi:10.1007/s10985-023-09591-x>.
Acquires and synthesizes soil carbon fluxes at sites located in the National Ecological Observatory Network (NEON). Provides flux estimates and associated uncertainty as well as key environmental measurements (soil water, temperature, CO2 concentration) that are used to compute soil fluxes.
Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.
This package provides a collection of datasets related to neutrosophic sets for statistical modeling and analysis.
This package provides functions for nonlinear time series analysis. This package permits the computation of the most-used nonlinear statistics/algorithms including generalized correlation dimension, information dimension, largest Lyapunov exponent, sample entropy and Recurrence Quantification Analysis (RQA), among others. Basic routines for surrogate data testing are also included. Part of this work was based on the book "Nonlinear time series analysis" by Holger Kantz and Thomas Schreiber (ISBN: 9780521529020).
Subsampling methods for big data under different models and assumptions. Starting with linear regression and leading to Generalised Linear Models, softmax regression, and quantile regression. Specifically, the model-robust subsampling method proposed in Mahendran, A., Thompson, H., and McGree, J. M. (2023) <doi:10.1007/s00362-023-01446-9>, where multiple models can describe the big data, and the subsampling framework for potentially misspecified Generalised Linear Models in Mahendran, A., Thompson, H., and McGree, J. M. (2025) <doi:10.48550/arXiv.2510.05902>.
Tests the goodness-of-fit to the Normal distribution for the errors of an ARMA model.
Density, distribution function, quantile function and random generation for the Nakagami distribution of Nakagami (1960) <doi:10.1016/B978-0-08-009306-2.50005-4>.
Estimate the non-linear odds ratio and plot it against a continuous exposure.
Generates LaTeX code for drawing well-formatted neural network diagrams with TikZ'. Users have to define number of neurons on each layer, and optionally define neuron connections they would like to keep or omit, layers they consider to be oversized and neurons they would like to draw with lighter color. They can also specify the title of diagram, color, opacity of figure, labels of layers, input and output neurons. In addition, this package helps to produce LaTeX code for drawing activation functions which are crucial in neural network analysis. To make the code work in a LaTeX editor, users need to install and import some TeX packages including TikZ in the setting of TeX file.
This package contains the following 5 nonparametric hypothesis tests: The Sign Test, The 2 Sample Median Test, Miller's Jackknife Procedure, Cochran's Q Test, & The Stuart-Maxwell Test.
Greedy Bayesian algorithm to fit the noisy stochastic block model to an observed sparse graph. Moreover, a graph inference procedure to recover Gaussian Graphical Model (GGM) from real data. This procedure comes with a control of the false discovery rate. The method is described in the article "Enhancing the Power of Gaussian Graphical Model Inference by Modeling the Graph Structure" by Kilian, Rebafka, and Villers (2024) <arXiv:2402.19021>.
Simulation, estimation, prediction procedure, and model identification methods for nonlinear time series analysis, including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, nonlinearity tests, Kalman filters and various sequential Monte Carlo methods. More examples and details about this package can be found in the book "Nonlinear Time Series Analysis" by Ruey S. Tsay and Rong Chen, John Wiley & Sons, 2018 (ISBN: 978-1-119-26407-1).
Count the occurrence of sequences of values in a vector that meets certain conditions of length and magnitude. The method is based on the Run Length Encoding algorithm, available with base R, inspired by A. H. Robinson and C. Cherry (1967) <doi:10.1109/PROC.1967.5493>.
Estimation of structural equation models with nonlinear effects and underlying nonnormal distributions.
Implementation of a probabilistic method to calculate nicheROVER (_niche_ _r_egion and niche _over_lap) metrics using multidimensional niche indicator data (e.g., stable isotopes, environmental variables, etc.). The niche region is defined as the joint probability density function of the multidimensional niche indicators at a user-defined probability alpha (e.g., 95%). Uncertainty is accounted for in a Bayesian framework, and the method can be extended to three or more indicator dimensions. It provides directional estimates of niche overlap, accounts for species-specific distributions in multivariate niche space, and produces unique and consistent bivariate projections of the multivariate niche region. The article by Swanson et al. (2015) <doi:10.1890/14-0235.1> provides a detailed description of the methodology. See the package vignette for a worked example using fish stable isotope data.
Analysis of multivariate data with two-way completely randomized factorial design. The analysis is based on fully nonparametric, rank-based methods and uses test statistics based on the Dempster's ANOVA, Wilk's Lambda, Lawley-Hotelling and Bartlett-Nanda-Pillai criteria. The multivariate response is allowed to be ordinal, quantitative, binary or a mixture of the different variable types. The package offers two functions performing the analysis, one for small and the other for large sample sizes. The underlying methodology is largely described in Bathke and Harrar (2016) <doi:10.1007/978-3-319-39065-9_7> and in Munzel and Brunner (2000) <doi:10.1016/S0378-3758(99)00212-8> and in Kiefel and Bathke (2022) <doi:10.1515/stat-2022-0112>.
This is the R API for the nfer formalism (<http://nfer.io/>). nfer was developed to specify event stream abstractions for spacecraft telemetry such as the Mars Science Laboratory. Users write rules using a syntax that borrows heavily from Allen's Temporal Logic that, when applied to an event stream, construct a hierarchy of temporal intervals with data. The R API supports loading rules from a file or mining them from historical data. Traces of events or pools of intervals are provided as data frames.