Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R interface for the Google Cloud Services Document AI API <https://cloud.google.com/document-ai/> with additional tools for output file parsing and text reconstruction. Document AI is a powerful server-based OCR service that extracts text and tables from images and PDF files with high accuracy. daiR gives R users programmatic access to this service and additional tools to handle and visualize the output. See the package website <https://dair.info/> for more information and examples.
It is used to identify dysregulated pathways based on a pre-ranked gene pair list. A fast algorithm is used to make the computation really fast. The data in package DysPIAData is needed.
Robust distance-based methods applied to matrices and data frames, producing distance matrices that can be used as input for various visualization techniques such as graphs, heatmaps, or multidimensional scaling configurations. See Boj and Grané (2024) <doi:10.1016/j.seps.2024.101992>.
Datasets and functions to accompany the book Analisis de datos con el programa estadistico R: una introduccion aplicada by Salas-Eljatib (2021, ISBN: 9789566086109). The package helps carry out data management, exploratory analyses, and model fitting.
Create a details HTML tag around R objects to place in a Markdown, Rmarkdown and roxygen2 documentation.
This package provides a set of tools to extract bibliographic content from Digital Science Dimensions using DSL API <https://www.dimensions.ai/dimensions-apis/>.
Load configuration from a .env file, that is in the current working directory, into environment variables.
This package provides an extensive and curated collection of datasets related to the digestive system, stomach, intestines, liver, pancreas, and associated diseases. This package includes clinical trials, observational studies, experimental datasets, cohort data, and case series involving gastrointestinal disorders such as gastritis, ulcers, pancreatitis, liver cirrhosis, colon cancer, colorectal conditions, Helicobacter pylori infection, irritable bowel syndrome, intestinal infections, and post-surgical outcomes. The datasets support educational, clinical, and research applications in gastroenterology, public health, epidemiology, and biomedical sciences. Designed for researchers, clinicians, data scientists, students, and educators interested in digestive diseases, the package facilitates reproducible analysis, modeling, and hypothesis testing using real-world and historical data.
This package implements various decision support tools related to the Econometrics & Technometrics. Subroutines include correlation reliability test, Mahalanobis distance measure for outlier detection, combinatorial search (all possible subset regression), non-parametric efficiency analysis measures: DDF (directional distance function), DEA (data envelopment analysis), HDF (hyperbolic distance function), SBM (slack-based measure), and SF (shortage function), benchmarking, Malmquist productivity analysis, risk analysis, technology adoption model, new product target setting, network DEA, dynamic DEA, intertemporal budgeting, etc.
Plan optimal sample size allocation and go/no-go decision rules for phase II/III drug development programs with time-to-event, binary or normally distributed endpoints when assuming fixed treatment effects or a prior distribution for the treatment effect, using methods from Kirchner et al. (2016) <doi:10.1002/sim.6624> and Preussler (2020). Optimal is in the sense of maximal expected utility, where the utility is a function taking into account the expected cost and benefit of the program. It is possible to extend to more complex settings with bias correction (Preussler S et al. (2020) <doi:10.1186/s12874-020-01093-w>), multiple phase III trials (Preussler et al. (2019) <doi:10.1002/bimj.201700241>), multi-arm trials (Preussler et al. (2019) <doi:10.1080/19466315.2019.1702092>), and multiple endpoints (Kieser et al. (2018) <doi:10.1002/pst.1861>).
Develop and evaluate treatment rules based on: (1) the standard indirect approach of split-regression, which fits regressions separately in both treatment groups and assigns an individual to the treatment option under which predicted outcome is more desirable; (2) the direct approach of outcome-weighted-learning proposed by Yingqi Zhao, Donglin Zeng, A. John Rush, and Michael Kosorok (2012) <doi:10.1080/01621459.2012.695674>; (3) the direct approach, which we refer to as direct-interactions, proposed by Shuai Chen, Lu Tian, Tianxi Cai, and Menggang Yu (2017) <doi:10.1111/biom.12676>. Please see the vignette for a walk-through of how to start with an observational dataset whose design is understood scientifically and end up with a treatment rule that is trustworthy statistically, along with an estimation of rule benefit in an independent sample.
The Dirichlet Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring: utility functions in implementing Dirichlet-Laplace priors such as visualization; scalability in Bayesian linear regression; penalized credible regions for variable selection.
Mixed model analysis for quantitative genetics with multi-trait responses and pedigree-based partitioning of individual variation into a range of environmental and genetic variance components for individual and maternal effects. Method documented in dmmOverview.pdf; dmm is an implementation of dispersion mean model described by Searle et al. (1992) "Variance Components", Wiley, NY. Dmm() can do MINQUE', bias-corrected-ML', and REML variance and covariance component estimates.
Fit of a double additive location-scale model with a nonparametric error distribution from possibly right- or interval censored data. The additive terms in the location and dispersion submodels, as well as the unknown error distribution in the location-scale model, are estimated using Laplace P-splines. For more details, see Lambert (2021) <doi:10.1016/j.csda.2021.107250>.
This package provides methods for analyzing population dynamics and movement tracks simulated using the DEPONS model <https://www.depons.eu> (v.3.0), for manipulating input raster files, shipping routes and for analyzing sound propagated from ships.
Empirical Bayes methods for learning prior distributions from data. An unknown prior distribution (g) has yielded (unobservable) parameters, each of which produces a data point from a parametric exponential family (f). The goal is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical Bayes methods. Details and examples are in the paper by Narasimhan and Efron (2020, <doi:10.18637/jss.v094.i11>).
This package provides functions are provided that facilitate the import and analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. CallRate', heterozygosity, reproducibility, maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR supports also the analysis of 3rd party software package such as newhybrid', structure', NeEstimator and blast'. Since version 2.0.3 we also implemented simulation functions, that allow to forward simulate SNP dynamics under different population and evolutionary dynamics. Comprehensive tutorials and support can be found at our github repository: github.com/green-striped-gecko/dartR/. If you want to cite dartR', you find the information by typing citation('dartR') in the console.
Explore neural networks in a layer oriented way, the framework is intended to give the user total control of the internals of a net without much effort. Use classes like PerceptronLayer to create a layer of Percetron neurons, and specify how many you want. The package does all the tricky stuff internally leaving you focused in what you want. I wrote this package during a neural networks course to help me with the problem set.
Researchers carried out a series of experiments passing a number of essays to different GPT detection models. Juxtaposing detector predictions for papers written by native and non-native English writers, the authors argue that GPT detectors disproportionately classify real writing from non-native English writers as AI-generated.
Several statistical methods for analyzing survival data under various forms of dependent censoring are implemented in the package. In addition to accounting for dependent censoring, it offers tools to adjust for unmeasured confounding factors. The implemented approaches allow users to estimate the dependency between survival time and dependent censoring time, based solely on observed survival data. For more details on the methods, refer to Deresa and Van Keilegom (2021) <doi:10.1093/biomet/asaa095>, Czado and Van Keilegom (2023) <doi:10.1093/biomet/asac067>, Crommen et al. (2024) <doi:10.1007/s11749-023-00903-9>, Deresa and Van Keilegom (2024) <doi:10.1080/01621459.2022.2161387>, Willems et al. (2025) <doi:10.48550/arXiv.2403.11860>, Ding and Van Keilegom (2025) and D'Haen et al. (2025) <doi:10.1007/s10985-025-09647-0>.
Helpers functions to process, analyse, and visualize the output of single locus species delimitation methods. For full functionality, please install suggested software at <https://legallab.github.io/delimtools/articles/install.html>.
Basic routines used in scientific coding, such as timing routines, vector/array handing functions and I/O support routines.
This package provides a d-statistic tests the null hypothesis of no treatment effect in a matched, nonrandomized study of the effects caused by treatments. A d-statistic focuses on subsets of matched pairs that demonstrate insensitivity to unmeasured bias in such an observational study, correcting for double-use of the data by conditional inference. This conditional inference can, in favorable circumstances, substantially increase the power of a sensitivity analysis (Rosenbaum (2010) <doi:10.1007/978-1-4419-1213-8_14>). There are two examples, one concerning unemployment from Lalive et al. (2006) <doi:10.1111/j.1467-937X.2006.00406.x>, the other concerning smoking and periodontal disease from Rosenbaum (2017) <doi:10.1214/17-STS621>.
Programmatic interface to the Daymet web services (<http://daymet.ornl.gov>). Allows for easy downloads of Daymet climate data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded (netCDF) data are provided.