Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Power analysis and sample size determination for moderation, mediation, and moderated mediation in models fitted by structural equation modelling using the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02> or by multiple regression. The package manymome by Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z> is used to specify the indirect paths or conditional indirect paths to be tested.
Creation and selection of PARAllel FACtor Analysis (PARAFAC) models of longitudinal microbiome data. You can import your own data with our import functions or use one of the example datasets to create your own PARAFAC models. Selection of the optimal number of components can be done using assessModelQuality() and assessModelStability(). The selected model can then be plotted using plotPARAFACmodel(). The Parallel Factor Analysis method was originally described by Caroll and Chang (1970) <doi:10.1007/BF02310791> and Harshman (1970) <https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf>.
R has no built-in pointer functionality. The pointr package fills this gap and lets you create pointers to R objects, including subsets of dataframes. This makes your R code more readable and maintainable.
Pharmacokinetics is the study of drug absorption, distribution, metabolism, and excretion. The pharmacokinetics model explains that how the drug concentration change as the drug moves through the different compartments of the body. For pharmacokinetic modeling and analysis, it is essential to understand the basic pharmacokinetic parameters. All parameters are considered, but only some of parameters are used in the model. Therefore, we need to convert the estimated parameters to the other parameters after fitting the specific pharmacokinetic model. This package is developed to help this converting work. For more detailed explanation of pharmacokinetic parameters, see "Gabrielsson and Weiner" (2007), "ISBN-10: 9197651001"; "Benet and Zia-Amirhosseini" (1995) <DOI: 10.1177/019262339502300203>; "Mould and Upton" (2012) <DOI: 10.1038/psp.2012.4>; "Mould and Upton" (2013) <DOI: 10.1038/psp.2013.14>.
This package provides a selection of tools that make it easier to place elements onto a (base R) plot exactly where you want them. It allows users to identify points and distances on a plot in terms of inches, pixels, margin lines, data units, and proportions of the plotting space, all in a manner more simple than manipulating par().
Create phantom variables, which are variables that were not observed, for the purpose of sensitivity analyses for structural equation models. The package makes it easier for a user to test different combinations of covariances between the phantom variable(s) and observed variables. The package may be used to assess a model's or effect's sensitivity to temporal bias (e.g., if cross-sectional data were collected) or confounding bias.
This package implements an n-dimensional parameter space partitioning algorithm for evaluating the global behaviour of formal computational models as described by Pitt, Kim, Navarro and Myung (2006) <doi:10.1037/0033-295X.113.1.57>.
Conduct dsep tests (piecewise SEM) of a directed, or mixed, acyclic graph without latent variables (but possibly with implicitly marginalized or conditioned latent variables that create dependent errors) based on linear, generalized linear, or additive modelswith or without a nesting structure for the data. Also included are functions to do desp tests step-by-step,exploratory path analysis, and Monte Carlo X2 probabilities. This package accompanies Shipley, B, (2026).Cause and Correlation in Biology: A User's Guide to Path Analysis, StructuralEquations and Causal Inference (3rd edition). Cambridge University Press.
This package provides functions to measure Alpha, Beta and Gamma Proximity to Irreplaceability. The methods for Alpha and Beta irreplaceability were first described in: Baisero D., Schuster R. & Plumptre A.J. Redefining and Mapping Global Irreplaceability. Conservation Biology 2021;1-11. <doi:10.1111/cobi.13806>.
This package provides simple methods to extract data portions from various objects. The relative portion size and the way the portion is selected can be chosen.
Clustering is unsupervised and exploratory in nature. Yet, it can be performed through penalized regression with grouping pursuit. In this package, we provide two algorithms for fitting the penalized regression-based clustering (PRclust) with non-convex grouping penalties, such as group truncated lasso, MCP and SCAD. One algorithm is based on quadratic penalty and difference convex method. Another algorithm is based on difference convex and ADMM, called DC-ADD, which is more efficient. Generalized cross validation and stability based method were provided to select the tuning parameters. Rand index, adjusted Rand index and Jaccard index were provided to estimate the agreement between estimated cluster memberships and the truth.
The function pointdensity returns a density count and the temporal average for every point in the original list. The dataframe returned includes four columns: lat, lon, count, and date_avg. The "lat" column is the original latitude data; the "lon" column is the original longitude data; the "count" is the density count of the number of points within a radius of radius*grid_size (the neighborhood); and the date_avg column includes the average date of each point in the neighborhood.
Scored responses and responses times from the Canadian subsample of the PISA 2018 assessment, accessible as the "Cognitive items total time/visits data file" by OECD (2020) <https://www.oecd.org/pisa/data/2018database/>.
This is a data-only package, containing data needed to run the CRAN package pathfindR', a package for enrichment analysis utilizing active subnetworks. This package contains protein-protein interaction network data, data related to gene sets and example input/output data.
Extracts growth, survival, and local neighborhood density information from repeated, fine-scale maps of organism occurrence. Further information about this package can be found in our journal article, "plantTracker: An R package to translate maps of plant occurrence into demographic data" published in 2022 in Methods in Ecology and Evolution (Stears, et al., 2022) <doi:10.1111/2041-210X.13950>.
An interface to simplify organizing parameters used in a package, using external configuration files. This attempts to provide a cleaner alternative to options().
Permutation based Kolmogorov-Smirnov test for paired samples. The test was proposed by Wang W.S., Amsler C. and Schmidt, P. (2025) <doi:10.1007/s00181-025-02779-0>.
Several functions introduced in Aster et al.'s book on inverse theory. The functions are often translations of MATLAB code developed by the authors to illustrate concepts of inverse theory as applied to geophysics. Generalized inversion, tomographic inversion algorithms (conjugate gradients, ART and SIRT'), non-linear least squares, first and second order Tikhonov regularization, roughness constraints, and procedures for estimating smoothing parameters are included.
Supports maximum likelihood inference for the Pearson VII distribution with shape parameter 3/2 and free location and scale parameters. This distribution is relevant when estimating the velocity of processive motor proteins with random detachment.
Transforms datetime data into a format ready for analysis. It offers two core functionalities; aggregating data to a higher level interval (thicken) and imputing records where observations were absent (pad).
This package provides a tidyverse'-style interface to the Brazilian Central Bank (<https://www.bcb.gov.br>) PIX Open Data API <https://olinda.bcb.gov.br/olinda/servico/Pix_DadosAbertos/versao/v1/aplicacao#!/recursos>. Retrieve statistics on PIX keys, transactions by municipality, and monthly transaction summaries. All functions return tibbles and support OData query parameters for filtering, selecting, and ordering data.
Given a SpatialPolygonsDataFrame and a set of populations for each polygon, compute a population density estimate based on Tobler's pycnophylactic interpolation algorithm. The result is a SpatialGridDataFrame. Methods are described in Tobler Waldo R. (1979) <doi:10.1080/01621459.1979.10481647>.
This program contains a function to find the peaks and troughs of a data set. It filters the set of peaks to remove noise based on the expected height and expected slope of a peak. Peaks that are too short (caused by random noise), or too shallow (part of the background data) are filtered out.
This package provides a system contains easy-to-use tools for the conditional estimation of the prevalence of an emerging or rare infectious diseases using the methods proposed in Guerrier et al. (2023) <arXiv:2012.10745>.