Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bayesian dynamic borrowing with covariate adjustment via inverse probability weighting for simulations and data analyses in clinical trials. This makes it easy to use propensity score methods to balance covariate distributions between external and internal data. This methodology based on Psioda et al (2025) <doi:10.1080/10543406.2025.2489285>.
Allows to view the optimal probability cut-off point at which the Sensitivity and Specificity meets and its a best way to minimize both Type-1 and Type-2 error for a binary Classifier in determining the Probability threshold.
This package implements three test procedures using bootstrap resampling techniques for assessing treatment effects in one-way ANOVA models with unequal variances (heteroscedasticity). It includes a parametric bootstrap likelihood ratio test (PB_LRT()), a pairwise parametric bootstrap mean test (PPBMT()), and a Rademacher wild pairwise non-parametric bootstrap test (RWPNPBT()). These methods provide robust alternatives to classical ANOVA and standard pairwise comparisons when the assumption of homogeneity of variances is violated.
It provides access to and information about the most important Brazilian economic time series - from the Getulio Vargas Foundation <http://portal.fgv.br/en>, the Central Bank of Brazil <http://www.bcb.gov.br> and the Brazilian Institute of Geography and Statistics <http://www.ibge.gov.br>. It also presents tools for managing, analysing (e.g. generating dynamic reports with a complete analysis of a series) and exporting these time series.
Belief propagation methods in Bayesian Networks to propagate evidence through the network. The implementation of these methods are based on the article: Cowell, RG (2005). Local Propagation in Conditional Gaussian Bayesian Networks <https://www.jmlr.org/papers/v6/cowell05a.html>. For details please see Yu et. al. (2020) BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian Networks <doi:10.18637/jss.v094.i03>. The optional cyjShiny package for running the Shiny app is available at <https://github.com/cytoscape/cyjShiny>. Please see the example in the documentation of runBayesNetApp function for installing cyjShiny package from GitHub.
Bayesian approach to multidimensional scaling. The package consists of implementations of the methods of Oh and Raftery (2001) <doi:10.1198/016214501753208690>.
Easily talk to Google's BigQuery Storage API from R (<https://cloud.google.com/bigquery/docs/reference/storage/rpc>).
Bayesian regularization for feed-forward neural networks.
Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.
Generation of correlated artificial binary data.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
View and analyze data where bunching is expected. Estimate counter- factual distributions. For earnings data, estimate the compensated elasticity of earnings w.r.t. the net-of-tax rate.
Application of genome prediction for a continuous variable, focused on genotype by environment (GE) genomic selection models (GS). It consists a group of functions that help to create regression kernels for some GE genomic models proposed by Jarquà n et al. (2014) <doi:10.1007/s00122-013-2243-1> and Lopez-Cruz et al. (2015) <doi:10.1534/g3.114.016097>. Also, it computes genomic predictions based on Bayesian approaches. The prediction function uses an orthogonal transformation of the data and specific priors present by Cuevas et al. (2014) <doi:10.1534/g3.114.013094>.
Fits, validates and compares a number of Bayesian models for spatial and space time point referenced and areal unit data. Model fitting is done using several packages: rstan', INLA', spBayes', spTimer', spTDyn', CARBayes and CARBayesST'. Model comparison is performed using the DIC and WAIC, and K-fold cross-validation where the user is free to select their own subset of data rows for validation. Sahu (2022) <doi:10.1201/9780429318443> describes the methods in detail.
Fit (using Bayesian methods) and simulate mixtures of univariate and bivariate angular distributions. Chakraborty and Wong (2021) <doi:10.18637/jss.v099.i11>.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2408.10558>, and allows for the statistical modeling of multi-attribute pairwise comparison data.
Algorithms developed for binned data analysis, gene expression data analysis and measurement error models for ordinal data analysis.
Download data from the time-series databases of the Bundesbank, the German central bank. See the overview at the Bundesbank website (<https://www.bundesbank.de/en/statistics/time-series-databases>) for available series. The package provides only a single function, getSeries(), which supports both traditional and real-time datasets; it will also download meta data if available. Downloaded data can automatically be arranged in various formats, such as data frames or zoo series. The data may optionally be cached, so as to avoid repeated downloads of the same series.
In ancient Chinese mythology, Bai Ze is a divine creature that knows the needs of everything. baizer provides data processing functions frequently used by the author. Hope this package also knows what you want!
Allows users to easily visualize data from the BLS (United States of America Bureau of Labor Statistics) <https://www.bls.gov>. Currently unemployment data series U1-U6 are available. Not affiliated with the Bureau of Labor Statistics or United States Government.
This package implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.
Distributes Gaussian process calculations across nodes in a distributed memory setting, using Rmpi. The bigGP class provides high-level methods for maximum likelihood with normal data, prediction, calculation of uncertainty (i.e., posterior covariance calculations), and simulation of realizations. In addition, bigGP provides an API for basic matrix calculations with distributed covariance matrices, including Cholesky decomposition, back/forwardsolve, crossproduct, and matrix multiplication.
This package provides a GUI to correct measurement bias in DNA methylation analyses. The BiasCorrector package just wraps the functions implemented in the R package rBiasCorrection into a shiny web application in order to make them more easily accessible. Publication: Kapsner et al. (2021) <doi:10.1002/ijc.33681>.
Bayesian analysis of luminescence data and C-14 age estimates. Bayesian models are based on the following publications: Combes, B. & Philippe, A. (2017) <doi:10.1016/j.quageo.2017.02.003> and Combes et al. (2015) <doi:10.1016/j.quageo.2015.04.001>. This includes, amongst others, data import, export, application of age models and palaeodose model.