Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a lightweight data validation and testing toolkit for R. Its guiding philosophy is that adding code-based data checks to users existing workflow should be both quick and intuitive. The suite of functions included therefore mirror the common data checks many users already perform by hand or by eye. Additionally, the checkthat package is optimized to work within tidyverse data manipulation pipelines.
This package provides a data package with 2 main package variables: signature and etiology'. The signature variable contains the latest mutational signature profiles released on COSMIC <https://cancer.sanger.ac.uk/signatures/> for 3 mutation types: * Single base substitutions in the context of preceding and following bases, * Doublet base substitutions, and * Small insertions and deletions. The etiology variable provides the known or hypothesized causes of signatures. cosmicsig stands for COSMIC signatures. Please run ?'cosmicsig for more information.
This package contains the prepared data that is needed for the shiny application examples in the canvasXpress package. This package also includes datasets used for automated testthat tests. Scotto L, Narayan G, Nandula SV, Arias-Pulido H et al. (2008) <doi:10.1002/gcc.20577>. Davis S, Meltzer PS (2007) <doi:10.1093/bioinformatics/btm254>.
Maps of Comoro Islands. Layers include the country coastline, each island coastline and administrative regions boundaries.
This package provides data science tools for conservation science, including methods for environmental data analysis, humidity calculations, sustainability metrics, engineering calculations, and data visualisation. Supports conservators, scientists, and engineers working with cultural heritage preventive conservation data. The package is motivated by the framework outlined in Cosaert and Beltran et al. (2022) "Tools for the Analysis of Collection Environments" <https://www.getty.edu/conservation/publications_resources/pdf_publications/tools_for_the_analysis_of_collection_environments.html>.
Extends the functionality of base R lists and provides specialized data structures deque', set', dict', and dict.table', the latter to extend the data.table package.
Clique percolation community detection for weighted and unweighted networks as well as threshold and plotting functions. For more information see Farkas et al. (2007) <doi:10.1088/1367-2630/9/6/180> and Palla et al. (2005) <doi:10.1038/nature03607>.
Canonical correlation analysis and maximum correlation via projection pursuit, as well as fast implementations of correlation estimators, with a focus on robust and nonparametric methods.
The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.
Generates skeletons of closed 2D polygons using Voronoi diagrams. It provides methods for sf', terra', and geos objects to compute polygon centerlines based on the generated skeletons. Voronoi, G. (1908) <doi:10.1515/crll.1908.134.198>.
Differential analyses and Enrichment pipeline for bulk ATAC-seq data analyses. This package combines different packages to have an ultimate package for both data analyses and visualization of ATAC-seq data. Methods are described in Karakaslar et al. (2021) <doi:10.1101/2021.03.05.434143>.
This package contains tools for working with data during statistical analysis, promoting flexible, intuitive, and reproducible workflows. There are functions designated for specific statistical tasks such building a custom univariate descriptive table, computing pairwise association statistics, etc. These are built on a collection of data manipulation tools designed for general use that are motivated by the functional programming concept.
Example data sets to run the example problems from causal inference textbooks. Currently, contains data sets for Huntington-Klein, Nick (2021 and 2025) "The Effect" <https://theeffectbook.net>, first and second edition, Cunningham, Scott (2021 and 2025, ISBN-13: 978-0-300-25168-5) "Causal Inference: The Mixtape", and Hernán, Miguel and James Robins (2020) "Causal Inference: What If" <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>.
Use the spatial association marginal contributions derived from spatial stratified heterogeneity to capture the degree of correlation between spatial patterns.
Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.
Building on top of the RcppArmadillo linear algebra functionalities to do fast spatial interaction models in the context of urban analytics, geography, transport modelling. It uses the Newton root search algorithm to determine the optimal cost exponent and can run country level models with thousands of origins and destinations. It aims at implementing an easy approach based on matrices, that can originate from various routing and processing steps earlier in an workflow. Currently, the simplest form of production, destination and doubly constrained models are implemented. Schlosser et al. (2023) <doi:10.48550/arXiv.2309.02112>.
An exact and a variational inference for coupled Hidden Markov Models applied to the joint detection of copy number variations.
Create simplex plots to visualize the similarity between single-cells and selected clusters in a 1-/2-/3-simplex space. Velocity information can be added as an additional layer. See Liu J, Wang Y et al (2023) <doi:10.1093/bioinformatics/btaf119> for more details.
Univariate feature selection and compound covariate methods under the Cox model with high-dimensional features (e.g., gene expressions). Available are survival data for non-small-cell lung cancer patients with gene expressions (Chen et al 2007 New Engl J Med) <DOI:10.1056/NEJMoa060096>, statistical methods in Emura et al (2012 PLoS ONE) <DOI:10.1371/journal.pone.0047627>, Emura & Chen (2016 Stat Methods Med Res) <DOI:10.1177/0962280214533378>, and Emura et al (2019)<DOI:10.1016/j.cmpb.2018.10.020>. Algorithms for generating correlated gene expressions are also available. Estimation of survival functions via copula-graphic (CG) estimators is also implemented, which is useful for sensitivity analyses under dependent censoring (Yeh et al 2023 Biomedicines) <DOI:10.3390/biomedicines11030797> and factorial survival analyses (Emura et al 2024 Stat Methods Med Res) <DOI:10.1177/09622802231215805>.
This package provides tools for visualization of, and inference on, the calibration of prediction models on the cumulative domain. This provides a method for evaluating calibration of risk prediction models without having to group the data or use tuning parameters (e.g., loess bandwidth). This package implements the methodology described in Sadatsafavi and Patkau (2024) <doi:10.1002/sim.10138>. The core of the package is cumulcalib(), which takes in vectors of binary responses and predicted risks. The plot() and summary() methods are implemented for the results returned by cumulcalib().
Corbae-Ouliaris frequency domain filtering. According to Corbae and Ouliaris (2006) <doi:10.1017/CBO9781139164863.008>, this is a solution for extracting cycles from time series, like business cycles etc. when filtering. This method is valid for both stationary and non-stationary time series.
This package provides the "comma-free call" operator: %(%'. Use it to call a function without commas between the arguments. Just replace the ( with %(% in a function call, supply your arguments as standard R expressions enclosed by ', and be free of commas (for that call).
Provide functions for reading and writing CSVW - i.e. CSV tables and JSON metadata. The metadata helps interpret CSV by setting the types and variable names.
This package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.