Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains functions to retrieve, organize, and visualize weather data from the NCEP/NCAR Reanalysis (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>) and NCEP/DOE Reanalysis II (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>) datasets. Data are queried via the Internet and may be obtained for a specified spatial and temporal extent or interpolated to a point in space and time. We also provide functions to visualize these weather data on a map. There are also functions to simulate flight trajectories according to specified behavior using either NCEP wind data or data specified by the user.
With this package we provide an easy method to compute robust and conditional Data Envelopment Analysis (DEA), Free Disposal Hull (FDH) and Benefit of the Doubt (BOD) scores. The robust approach is based on the work of Cazals, Florens and Simar (2002) <doi:10.1016/S0304-4076(01)00080-X>. The conditional approach is based on Daraio and Simar (2007) <doi:10.1007/s11123-007-0049-3>. Besides we provide graphs to help with the choice of m. We relay on the Benchmarking package to compute the efficiency scores and on the np package to compute non parametric estimation of similarity among units.
This package provides a programmatic interface to the Request Tracker (RT) HTTP API <https://rt-wiki.bestpractical.com/wiki/REST>. RT is a popular ticket tracking system.
This package provides a rotatogram is a method of displaying an association which is axis non-dominant. This is achieved in two ways: First, the method of estimating the slope and intercept uses the least-products method rather than more typical least squared error for the "dependent" variable. The least products method has no "dependent" variable and is scale independent. Second, the plot is rotated such that the resulting regression line is vertical, reducing the suggestion that the vertical axis is the dominant one. The slope can be read relative to either axis equally.
Selects one model with variable selection FDR controlled at a specified level. A q-value for each potential variable is also returned. The input, variable selection counts over many bootstraps for several levels of penalization, is modeled as coming from a beta-binomial mixture distribution.
Interactive data tables for R, based on the React Table JavaScript library. Provides an HTML widget that can be used in R Markdown or Quarto documents, Shiny applications, or viewed from an R console.
The regression-based (RB) approach is a method to test the missing data mechanism. This package contains two functions that test the type of missing data (Missing Completely At Random vs Missing At Random) on the basis of the RB approach. The first function applies the RB approach independently on each variable with missing data, using the completely observed variables only. The second function tests the missing data mechanism globally (on all variables with missing data) with the use of all available information. The algorithm is adapted both to continuous and categorical data.
This package provides a general routine, envMU, which allows estimation of the M envelope of span(U) given root n consistent estimators of M and U. The routine envMU does not presume a model. This package implements response envelopes, partial response envelopes, envelopes in the predictor space, heteroscedastic envelopes, simultaneous envelopes, scaled response envelopes, scaled envelopes in the predictor space, groupwise envelopes, weighted envelopes, envelopes in logistic regression, envelopes in Poisson regression envelopes in function-on-function linear regression, envelope-based Partial Partial Least Squares, envelopes with non-constant error covariance, envelopes with t-distributed errors, reduced rank envelopes and reduced rank envelopes with non-constant error covariance. For each of these model-based routines the package provides inference tools including bootstrap, cross validation, estimation and prediction, hypothesis testing on coefficients are included except for weighted envelopes. Tools for selection of dimension include AIC, BIC and likelihood ratio testing. Background is available at Cook, R. D., Forzani, L. and Su, Z. (2016) <doi:10.1016/j.jmva.2016.05.006>. Optimization is based on a clockwise coordinate descent algorithm.
This package implements the Simulating Optimal FUNctioning framework for site-scale simulations of ecosystem processes, including model calibration. It contains Fortran 90 modules for the P-model (Stocker et al. (2020) <doi:10.5194/gmd-13-1545-2020>), SPLASH (Davis et al. (2017) <doi:10.5194/gmd-10-689-2017>) and BiomeE (Weng et al. (2015) <doi:10.5194/bg-12-2655-2015>).
This package provides bioaccumulation factors from a toxicokinetic model fitted to accumulation-depuration data. It is designed to fulfil the requirements of regulators when examining applications for market authorization of active substances.
The kappa statistic implemented by Fleiss is a very popular index for assessing the reliability of agreement among multiple observers. It is used both in the psychological and in the psychiatric field. Other fields of application are typically medicine, biology and engineering. Unfortunately,the kappa statistic may behave inconsistently in case of strong agreement between raters, since this index assumes lower values than it would have been expected. We propose a modification kappa implemented by Fleiss in case of nominal and ordinal variables. Monte Carlo simulations are used both to testing statistical hypotheses and to calculating percentile bootstrap confidence intervals based on proposed statistic in case of nominal and ordinal data.
Estimates flexible epidemiological effect measures including both differences and ratios using the parametric G-formula developed as an alternative to inverse probability weighting. It is useful for estimating the impact of interventions in the presence of treatment-confounder-feedback. G-computation was originally described by Robbins (1986) <doi:10.1016/0270-0255(86)90088-6> and has been described in detail by Ahern, Hubbard, and Galea (2009) <doi:10.1093/aje/kwp015>; Snowden, Rose, and Mortimer (2011) <doi:10.1093/aje/kwq472>; and Westreich et al. (2012) <doi:10.1002/sim.5316>.
Display spatial data with interactive maps powered by the open- source JavaScript library Leaflet (see <https://leafletjs.com/>). Maps can be rendered in a web browser or displayed in the HTML viewer pane of RStudio'. This package is designed to be easy to use and can create complex maps with vector and raster data, web served map tiles and interface elements.
Eurostat is the statistical office of the European Union and provides high quality statistics for Europe. Large set of the data is disseminated through the Eurostat database (<https://ec.europa.eu/eurostat/web/main/data/database>). The tools are using the REST API with the Statistical Data and Metadata eXchange (SDMX) Web Services (<https://ec.europa.eu/eurostat/web/user-guides/data-browser/api-data-access/api-detailed-guidelines/sdmx2-1>) to search and download data from the Eurostat database using the SDMX standard.
Robust Location and Scatter Estimation and Robust Multivariate Analysis with High Breakdown Point for Incomplete Data (missing values) (Todorov et al. (2010) <doi:10.1007/s11634-010-0075-2>).
Model fitting, model selection and parameter tuning procedures for a class of random network models. Many useful network modeling, estimation, and processing methods are included. The work to build and improve this package is partially supported by the NSF grants DMS-2015298 and DMS-2015134.
This package provides a friendly, object oriented API for creating PowerPoint slide decks in R.
Estimates the p-probability return curve proposed by Murphy-Barltrop et al. (2023) <doi:10.1002/env.2797>. Implements pointwise and smooth estimation of the angular dependence function introduced by Wadsworth and Tawn (2013) <doi:10.3150/12-BEJ471>.
Compute price indices using various Hedonic and multilateral methods, including Laspeyres, Paasche, Fisher, and HMTS (Hedonic Multilateral Time series re-estimation with splicing). The central function calculate_price_index() offers a unified interface for running these methods on structured datasets. This package is designed to support index construction workflows across a wide range of domains â including but not limited to real estate â where quality-adjusted price comparisons over time are essential. The development of this package was funded by Eurostat and Statistics Netherlands (CBS), and carried out by Statistics Netherlands. The HMTS method implemented here is described in Ishaak, Ouwehand and Remøy (2024) <doi:10.1177/0282423X241246617>. For broader methodological context, see Eurostat (2013, ISBN:978-92-79-25984-5, <doi:10.2785/34007>).
Generates both total- and level-specific R-squared measures from Rights and Sterbaâ s (2019) <doi:10.1037/met0000184> framework of R-squared measures for multilevel models with random intercepts and/or slopes, which is based on a complete decomposition of variance. Additionally generates graphical representations of these R-squared measures to allow visualizing and interpreting all measures in the framework together as an integrated set. This framework subsumes 10 previously-developed R-squared measures for multilevel models as special cases of 5 measures from the framework, and it also includes several newly-developed measures. Measures in the framework can be used to compute R-squared differences when comparing multilevel models (following procedures in Rights & Sterba (2020) <doi:10.1080/00273171.2019.1660605>). Bootstrapped confidence intervals can also be calculated. To use the confidence interval functionality, download bootmlm from <https://github.com/marklhc/bootmlm>.
MsgPack header files are provided for use by R packages, along with the ability to access, create and alter MsgPack objects directly from R. MsgPack is an efficient binary serialization format. It lets you exchange data among multiple languages like JSON but it is faster and smaller. Small integers are encoded into a single byte, and typical short strings require only one extra byte in addition to the strings themselves. This package provides headers from the msgpack-c implementation for C and C++(11) for use by R, particularly Rcpp'. The included msgpack-c headers are licensed under the Boost Software License (Version 1.0); the code added by this package as well the R integration are licensed under the GPL (>= 2). See the files COPYRIGHTS and AUTHORS for a full list of copyright holders and contributors to msgpack-c'.
Root Expected Proportion Squared Difference (REPSD) is a nonparametric differential item functioning (DIF) method that (a) allows practitioners to explore for DIF related to small, fine-grained focal groups of examinees, and (b) compares the focal group directly to the composite group that will be used to develop the reported test score scale. Using your provided response matrix with a column that identifies focal group membership, this package provides the REPSD values, a simulated null distribution of possible REPSD values, and the simulated p-values identifying items possibly displaying DIF without requiring enormous sample sizes.
Routines for developing models that describe reaction and advective-diffusive transport in one, two or three dimensions. Includes transport routines in porous media, in estuaries, and in bodies with variable shape.
Automatically apply different strategies to optimize R code. rco functions take R code as input, and returns R code as output.