Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates probit, logit, Poisson, negative binomial, and beta regression models, returning their marginal effects, odds ratios, or incidence rate ratios as an output. Greene (2008, pp. 780-7) provides a textbook introduction to this topic.
We implement functions allowing for mediation analysis to be performed in cases where the mediator is a count variable with excess zeroes. First a function is provided allowing users to perform analysis for zero-inflated count variables using the marginalized zero-inflated Poisson (MZIP) model (Long et al. 2014 <DOI:10.1002/sim.6293>). Using the counterfactual approach to mediation and MZIP we can obtain natural direct and indirect effects for the overall population. Using delta method processes variance estimation can be performed instantaneously. Alternatively, bootstrap standard errors can be used. We also provide functions for cases with exposure-mediator interactions with four-way decomposition of total effect.
This plot integrates annotation into a manhattan plot. The plot is implemented as a heatmap, which is binned using -log10(p-value) and chromosome position. Annotation currently supported is minor allele frequency and gene function high impact variants.
Create animated biplots that enables dynamic visualisation of temporal or sequential changes in multivariate data by animating a single biplot across the levels of a time variable. It builds on objects from the biplotEZ package, Lubbe S, le Roux N, Nienkemper-Swanepoel J, Ganey R, Buys R, Adams Z, Manefeldt P (2024) <doi:10.32614/CRAN.package.biplotEZ>, allowing users to create animated biplots that reveal how both samples and variables evolve over time.
Interface to Apache Commons Email to send emails from R.
Local adaptation and evaluation of maps of continuous attributes in raster format by use of point location data.
Multi-core replication function to make it easier to do fast Monte Carlo simulation. Based on the mcreplicate() function from the rethinking package. The rethinking package requires installing rstan', which is onerous to install, while also not adding capabilities to this function.
Automation tool to run R scripts if needed, based on last modified time. It comes with no package dependencies, organizational overhead, or structural requirements. In short: run an R script if underlying files have changed, otherwise do nothing.
This package contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.
Fits multivariate Ornstein-Uhlenbeck types of models to continues trait data from species related by a common evolutionary history. See K. Bartoszek, J, Pienaar, P. Mostad, S. Andersson, T. F. Hansen (2012) <doi:10.1016/j.jtbi.2012.08.005> and K. Bartoszek, and J. Tredgett Clarke, J. Fuentes-Gonzalez, V. Mitov, J. Pienaar, M. Piwczynski, R. Puchalka, K. Spalik, K. L. Voje (2024) <doi:10.1111/2041-210X.14376>. The suggested PCMBaseCpp package (which significantly speeds up the likelihood calculations) can be obtained from <https://github.com/venelin/PCMBaseCpp/>.
This package provides functions to compute and plot multivariate (partial) Mantel correlograms.
Fit multi-level models with possibly correlated random effects using Markov Chain Monte Carlo simulation. Such models allow smoothing over space and time and are useful in, for example, small area estimation.
Fit growth curves to various known microbial growth models automatically to estimate growth parameters. Growth curves can be plotted with their uncertainty band. Growth models are: modified Gompertz model (Zwietering et al. (1990) <doi:10.1128/aem.56.6.1875-1881.1990>), Baranyi model (Baranyi and Roberts (1994) <doi:10.1016/0168-1605%2894%2990157-0>), Rosso model (Rosso et al. (1993) <doi:10.1006/jtbi.1993.1099>) and linear model (Dantigny (2005) <doi:10.1016/j.ijfoodmicro.2004.10.013>).
Quickly and conveniently create interactive visualisations of spatial data with or without background maps. Attributes of displayed features are fully queryable via pop-up windows. Additional functionality includes methods to visualise true- and false-color raster images and bounding boxes.
Given the maximum available sample size (N) for an experiment, and the target levels of Type I and II error probabilities, this package designs a modified SPRT (MSPRT). For any designed MSPRT the package can also obtain its operating characteristics and implement the test for a given sequentially observed data. The MSPRT is defined in a manner very similar to Wald's initial proposal. The proposed test has shown evidence of reducing the average sample size required to perform statistical hypothesis tests at specified levels of significance and power. Currently, the package implements one-sample proportion tests, one and two-sample z tests, and one and two-sample t tests. A brief user guidance for this package is provided below. One can also refer to the supplemental information for the same.
Fully parametric Bayesian multiple imputation framework for massive multivariate data of different variable types as seen in Demirtas, H. (2017) <doi:10.1007/978-981-10-3307-0_8>.
This package implements multi-factor curve analysis for grouped data in R', replicating and extending the functionality of the the Stata ado mfcurve (Krähmer, 2023) <https://ideas.repec.org/c/boc/bocode/s459224.html>. Related to the idea of specification curve analysis (Simonsohn, Simmons, and Nelson, 2020) <doi:10.1038/s41562-020-0912-z>. Includes data preprocessing, statistical testing, and visualization of results with confidence intervals.
This package provides a number of functions to facilitate the handling and production of reports using time series data. The package was developed to be understandable for beginners, so some functions aim to transform processes that would be complex into functions with a few lines. The main advantage of using the metools package is the ease of producing reports and working with time series using a few lines of code, so the code is clean and easy to understand/maintain. Learn more about the metools at <https://metoolsr.wordpress.com>.
This package provides a complete and dedicated analytical toolbox for quality control and diagnosis based on subject-related measurements of micro-RNA (miRNA) expressions. The package consists of a set of functions that allow to train, optimize and use a Bayesian classifier that relies on multiplets of measured miRNA expressions. The package also implements the quality control tools required to preprocess input datasets. In addition, the package provides a function to carry out a statistical analysis of miRNA expressions, which can give insights to improve the classifier's performance. The method implemented in the package was first introduced in L. Ricci, V. Del Vescovo, C. Cantaloni, M. Grasso, M. Barbareschi and M. A. Denti, "Statistical analysis of a Bayesian classifier based on the expression of miRNAs", BMC Bioinformatics 16:287, 2015 <doi:10.1186/s12859-015-0715-9>. The package is thoroughly described in M. Castelluzzo, A. Perinelli, S. Detassis, M. A. Denti and L. Ricci, "MiRNA-QC-and-Diagnosis: An R package for diagnosis based on MiRNA expression", SoftwareX 12:100569, 2020 <doi:10.1016/j.softx.2020.100569>. Please cite both these works if you use the package for your analysis. DISCLAIMER: The software in this package is for general research purposes only and is thus provided WITHOUT ANY WARRANTY. It is NOT intended to form the basis of clinical decisions. Please refer to the GNU General Public License 3.0 (GPLv3) for further information.
Algorithms for solving various Maximum Weight Connected Subgraph Problems, including variants with budget constraints, cardinality constraints, weighted edges and signals. The package represents an R interface to high-efficient solvers based on relax-and-cut approach (Ã lvarez-Miranda E., Sinnl M. (2017) <doi:10.1016/j.cor.2017.05.015>) mixed-integer programming (Loboda A., Artyomov M., and Sergushichev A. (2016) <doi:10.1007/978-3-319-43681-4_17>) and simulated annealing.
Runs a Shiny web application that merges raw qPCR fluorescence data with related metadata to visualize species presence/absence detection patterns and assess data quality. The application calculates threshold values from raw fluorescence data using a method based on the second derivative method, Luu-The et al (2005) <doi:10.2144/05382RR05>, and utilizes the âchipPCRâ package by Rödiger, Burdukiewicz, & Schierack (2015) <doi:10.1093/bioinformatics/btv205> to calculate Cq values. The application has the ability to connect to a custom developed MySQL database to populate the applications interface. The application allows users to interact with visualizations such as a dynamic map, amplification curves and standard curves, that allow for zooming and/or filtering. It also enables the generation of customized exportable reports based on filtered mapping data.
Generate interactive html reports that enable quick visual review of multiple related time series stored in a data frame. For static datasets, this can help to identify any temporal artefacts that may affect the validity of subsequent analyses. For live data feeds, regularly scheduled reports can help to pro-actively identify data feed problems or unexpected trends that may require action. The reports are self-contained and shareable without a web server.
Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.
Simulation-based sensitivity analysis for causal mediation studies. It numerically and graphically evaluates the sensitivity of causal mediation analysis results to the presence of unmeasured pretreatment confounding. The proposed method has primary advantages over existing methods. First, using an unmeasured pretreatment confounder conditional associations with the treatment, mediator, and outcome as sensitivity parameters, the method enables users to intuitively assess sensitivity in reference to prior knowledge about the strength of a potential unmeasured pretreatment confounder. Second, the method accurately reflects the influence of unmeasured pretreatment confounding on the efficiency of estimation of the causal effects. Third, the method can be implemented in different causal mediation analysis approaches, including regression-based, simulation-based, and propensity score-based methods. It is applicable to both randomized experiments and observational studies.