Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a comprehensive toolkit for analyzing and visualizing neural data outputs, including Principal Component Analysis (PCA) trajectory plotting, Multi-Electrode Array (MEA) heatmap generation, and variable importance analysis. Provides publication-ready visualizations with flexible customization options for neuroscience research applications.
Predicting the structure of a graph including new nodes and edges using a time series of graphs. Flux balance analysis, a linear and integer programming technique used in biochemistry is used with time series prediction methods to predict the graph structure at a future time point Kandanaarachchi (2025) <doi:10.48550/arXiv.2507.05806>.
User-friendly functions for extracting a data table (row for each match, column for each group) from non-tabular text data using regular expressions, and for melting columns that match a regular expression. Patterns are defined using a readable syntax that makes it easy to build complex patterns in terms of simpler, re-usable sub-patterns. Named R arguments are translated to column names in the output; capture groups without names are used internally in order to provide a standard interface to three regular expression C libraries ('PCRE', RE2', ICU'). Output can also include numeric columns via user-specified type conversion functions.
This package provides functions for the normal Laplace distribution. Currently, it provides limited functionality. Density, distribution and quantile functions, random number generation, and moments are provided.
Various visual and numerical diagnosis methods for the nonlinear mixed effect model, including visual predictive checks, numerical predictive checks, and coverage plots (Karlsson and Holford, 2008, <https://www.page-meeting.org/?abstract=1434>).
The field of immunology benefits from software that can predict which peptide sequences trigger an immune response. NetMHCIIpan is a such a tool: it predicts the binding strength of a short peptide to a Major Histocompatibility Complex class II (MHC-II) molecule. NetMHCIIpan can be used from a web server at <https://services.healthtech.dtu.dk/services/NetMHCIIpan-3.2/> or from the command-line, using a local installation. This package allows to call NetMHCIIpan from R.
This package provides a set of functions to scrape and analyze rugby data. Supports competitions including the National Rugby League, New South Wales Cup, Queensland Cup, Super League, and various representative and women's competitions. Includes functions to fetch player statistics, match results, ladders, venues, and coaching data. Designed to assist analysts, fans, and researchers in exploring historical and current rugby league data. See Woods et al. (2017) <doi:10.1123/ijspp.2016-0187> for an example of rugby league performance analysis methodology.
Calculation of molecular number and brightness from fluorescence microscopy image series. The software was published in a 2016 paper <doi:10.1093/bioinformatics/btx434>. The seminal paper for the technique is Digman et al. 2008 <doi:10.1529/biophysj.107.114645>. A review of the technique was published in 2017 <doi:10.1016/j.ymeth.2017.12.001>.
This is a pure dummy interfaces package which mirrors MsSparkUtils APIs <https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/microsoft-spark-utilities?pivots=programming-language-r> of Azure Synapse Analytics <https://learn.microsoft.com/en-us/azure/synapse-analytics/> for R users, customer of Azure Synapse can download this package from CRAN for local development.
Implementation of forward selection based on cross-validated linear and logistic regression.
This package provides a reproducible workflow for binning and visualizing NMR (nuclear magnetic resonance) spectra from environmental samples. The nmrrr package is intended for post-processing of NMR data, including importing, merging and, cleaning data from multiple files, visualizing NMR spectra, performing binning/integrations for compound classes, and relative abundance calculations. This package can be easily inserted into existing analysis workflows by users to help with analyzing and interpreting NMR data.
In semi-structured interviews that use the framework method, it is not always clear how refinements to interview questions affect the decision of when to stop interviews. The trend of novel and duplicate interview codes (novel codes are information that other interviewees have not previously mentioned) provides insight into the richness of qualitative information. This package provides tools to visualise when refinements occur and how that affects the trends of novel and duplicate codes. These visualisations, when used progressively as new interviews are finished, can help the researcher to decide on a stopping point for their interviews. For context, see Wong et al., (2023) <doi:10.1177/16094069231220773>.
This package provides a method for obtaining nonparametric estimates of regression models with or without factor-by-curve interactions using local polynomial kernel smoothers or splines. Additionally, a parametric model (allometric model) can be estimated.
Statistical tools for analyzing cognitive diagnosis (CD) data collected from small settings using the nonparametric classification (NPCD) framework. The core methods of the NPCD framework includes the nonparametric classification (NPC) method developed by Chiu and Douglas (2013) <DOI:10.1007/s00357-013-9132-9> and the general NPC (GNPC) method developed by Chiu, Sun, and Bian (2018) <DOI:10.1007/s11336-017-9595-4> and Chiu and Köhn (2019) <DOI:10.1007/s11336-019-09660-x>. An extension of the NPCD framework included in the package is the nonparametric method for multiple-choice items (MC-NPC) developed by Wang, Chiu, and Koehn (2023) <DOI:10.3102/10769986221133088>. Functions associated with various extensions concerning the evaluation, validation, and feasibility of the CD analysis are also provided. These topics include the completeness of Q-matrix, Q-matrix refinement method, as well as Q-matrix estimation.
This package provides a collection of utilities referred to Exponential Power distribution, also known as General Error Distribution (see Mineo, A.M. and Ruggieri, M. (2005), A software Tool for the Exponential Power Distribution: The normalp package. In Journal of Statistical Software, Vol. 12, Issue 4).
Lite interface for getting data from OSM service Nominatim <https://nominatim.org/release-docs/latest/>. Extract coordinates from addresses, find places near a set of coordinates and return spatial objects on sf format.
This package provides tools for 4D nucleome imaging. Quantitative analysis of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. See Volker J. Schmid, Marion Cremer, Thomas Cremer (2017) <doi:10.1016/j.ymeth.2017.03.013>.
Datasets for nlmixr2 and rxode2'. nlmixr2 is used for fitting and comparing nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Calculate various functions needed for design and monitoring clinical trials with negative binomial endpoint with variable follow-up. This version has a few changes compared to the previous version 1.0.0, including (1) correct a typo in Type 1 censoring, mtbnull=bnull and (2) restructure the code to account for shape parameter equal to zero, i.e. Poisson scenario.
Macros to generate nimble code from a concise syntax. Included are macros for generating linear modeling code using a formula-based syntax and for building for() loops. For more details review the nimble manual: <https://r-nimble.org/html_manual/cha-writing-models.html#subsec:macros>.
Interface to gather news from the News API', based on a multilevel query <https://newsapi.org/>. A personal API key is required.
Statistical entropy analysis of network data as introduced by Frank and Shafie (2016) <doi:10.1177/0759106315615511>, and a in textbook which is in progress.
Optimization for nonlinear objective and constraint functions. Linear or nonlinear equality and inequality constraints are allowed. It accepts the input parameters as a constrained matrix.
Robust nonparametric bootstrap and permutation tests for location, correlation, and regression problems, as described in Helwig (2019a) <doi:10.1002/wics.1457> and Helwig (2019b) <doi:10.1016/j.neuroimage.2019.116030>. Univariate and multivariate tests are supported. For each problem, exact tests and Monte Carlo approximations are available. Five different nonparametric bootstrap confidence intervals are implemented. Parallel computing is implemented via the parallel package.