Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Using Australian Bureau of Statistics indices, provides functions that convert historical, nominal statistics to real, contemporary values without worrying about date input quality, performance, or the ABS catalogue.
It is well known that the distribution of a Gaussian ratio does not follow a Gaussian distribution. The lack of awareness among users of vegetation indices about this non-Gaussian nature could lead to incorrect statistical modeling and interpretation. This package provides tools to accurately handle and analyse such ratios: density function, parameter estimation, simulation. An example on the study of chlorophyll fluorescence can be found in A. El Ghaziri et al. (2023) <doi:10.3390/rs15020528> and another method for parameter estimation is given in Bouhlel et al. (2023) <doi:10.23919/EUSIPCO58844.2023.10290111>.
Download and process public domain works in the Project Gutenberg collection <https://www.gutenberg.org/>. Includes metadata for all Project Gutenberg works, so that they can be searched and retrieved.
Implementation of several generalized F-statistics. The current version includes a generalized F-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>.
This package provides convenient wrapper functions around the glue library for common string interpolation tasks. The package simplifies the process of combining glue string templating with common R functions like message(), warning(), stop(), print(), cat(), and file writing operations. Instead of manually calling glue() and then passing the result to these functions, glueDo provides direct wrapper functions that handle both steps in a single call. This is particularly useful for logging, error handling, and formatted output in R scripts and packages. The main reference for the underlying glue package is Hester and Bryan (2022) <https://CRAN.R-project.org/package=glue>.
Homogenize GNSS (Global Navigation Satellite System) time-series. The general model is a segmentation in the mean model including a periodic function and considering monthly variances, see Quarello (2020) <arXiv:2005.04683>.
Includes the reference implementation of Genie - a hierarchical clustering algorithm that links two point groups in such a way that an inequity measure (namely, the Gini index) of the cluster sizes does not significantly increase above a given threshold. This method most often outperforms many other data segmentation approaches in terms of clustering quality as tested on a wide range of benchmark datasets. At the same time, Genie retains the high speed of the single linkage approach, therefore it is also suitable for analysing larger data sets. For more details see (Gagolewski et al. 2016 <DOI:10.1016/j.ins.2016.05.003>). For an even faster and more feature-rich implementation, including, amongst others, noise point detection, see the genieclust package.
Fits a geographically weighted regression model using zero inflated probability distributions. Has the zero inflated negative binomial distribution (zinb) as default, but also accepts the zero inflated Poisson (zip), negative binomial (negbin) and Poisson distributions. Can also fit the global versions of each regression model. Da Silva, A. R. & De Sousa, M. D. R. (2023). "Geographically weighted zero-inflated negative binomial regression: A general case for count data", Spatial Statistics <doi:10.1016/j.spasta.2023.100790>. Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). "Geographically weighted regression: a method for exploring spatial nonstationarity", Geographical Analysis, <doi:10.1111/j.1538-4632.1996.tb00936.x>. Yau, K. K. W., Wang, K., & Lee, A. H. (2003). "Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros", Biometrical Journal, <doi:10.1002/bimj.200390024>.
Some useful functions that can use grid and ggplot2 to plot sectors and interact with Seurat to plot gene expression percentages. Also, there are some examples of how to draw sectors in ComplexHeatmap'.
Extended techniques for generalized linear models (GLMs), especially for binary responses, including parametric links and heteroscedastic latent variables.
Constructs gains tables and lift charts for prediction algorithms. Gains tables and lift charts are commonly used in direct marketing applications. The method is described in Drozdenko and Drake (2002), "Optimal Database Marketing", Chapter 11.
Find the smallest circle that contains all longitude and latitude input points. From the generated center and radius, variable side polygons can be created, navigation based on bearing and distance can be applied, and more. Based on a modified version of Welzl's algorithm for smallest circle. Distance calculations are based on the haversine formula. Calculations for distance, midpoint, bearing and more are derived from <https://www.movable-type.co.uk>.
Offers the Generalized Berk-Jones (GBJ) test for set-based inference in genetic association studies. The GBJ is designed as an alternative to tests such as Berk-Jones (BJ), Higher Criticism (HC), Generalized Higher Criticism (GHC), Minimum p-value (minP), and Sequence Kernel Association Test (SKAT). All of these other methods (except for SKAT) are also implemented in this package, and we additionally provide an omnibus test (OMNI) which integrates information from each of the tests. The GBJ has been shown to outperform other tests in genetic association studies when signals are correlated and moderately sparse. Please see the vignette for a quickstart guide or Sun and Lin (2017) <arXiv:1710.02469> for more details.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.
This package provides a set of wrapper functions that mainly re-produces most of the sequence plots rendered with TraMineR::seqplot(). Whereas TraMineR uses base R to produce the plots this library draws on ggplot2'. The plots are produced on the basis of a sequence object defined with TraMineR::seqdef(). The package automates the reshaping and plotting of sequence data. Resulting plots are of class ggplot', i.e. components can be added and tweaked using + and regular ggplot2 functions.
This package provides a collection of gold price data in various currencies in the form of USD, EUR, JPY, GBP, CAD, CHF, INR, CNY, TRY, SAR, IDR, AED, THB, VND, EGP, KRW, RUB, ZAR, and AUD. This data comes from the World Gold Council. In addition, the data is in the form of daily, weekly, monthly (average and the end of period), quarterly (average and the end of period), and yearly (average and the end of period).
This package provides an interface to the GenderAPI.io web service (<https://www.genderapi.io>) for determining gender from personal names, email addresses, or social media usernames. Functions are available to submit single or batch queries and retrieve additional information such as accuracy scores and country-specific gender predictions. This package simplifies integration of GenderAPI.io into R workflows for data cleaning, user profiling, and analytics tasks.
This package provides a workflow for correction of Differential Interferometric Synthetic Aperture Radar (DInSAR) atmospheric delay base on Generic Atmospheric Correction Online Service for InSAR (GACOS) data and correction algorithms proposed by Chen Yu. This package calculate the Both Zenith and LOS direction (User Depend). You have to just download GACOS product on your area and preprocessed D-InSAR unwrapped images. Cite those references and this package in your work, when using this framework. References: Yu, C., N. T. Penna, and Z. Li (2017) <doi:10.1016/j.rse.2017.10.038>. Yu, C., Li, Z., & Penna, N. T. (2017) <doi:10.1016/j.rse.2017.10.038>. Yu, C., Penna, N. T., and Li, Z. (2017) <doi:10.1002/2016JD025753>.
Several tools for Global Value Chain ('GVC') analysis are implemented.
Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation.
Fits a generalized linear density ratio model (GLDRM). A GLDRM is a semiparametric generalized linear model. In contrast to a GLM, which assumes a particular exponential family distribution, the GLDRM uses a semiparametric likelihood to estimate the reference distribution. The reference distribution may be any discrete, continuous, or mixed exponential family distribution. The model parameters, which include both the regression coefficients and the cdf of the unspecified reference distribution, are estimated by maximizing a semiparametric likelihood. Regression coefficients are estimated with no loss of efficiency, i.e. the asymptotic variance is the same as if the true exponential family distribution were known. Huang (2014) <doi:10.1080/01621459.2013.824892>. Huang and Rathouz (2012) <doi:10.1093/biomet/asr075>. Rathouz and Gao (2008) <doi:10.1093/biostatistics/kxn030>.
Add mean comparison annotations to a ggplot'. This package provides an easy way to indicate if two or more groups are significantly different in a ggplot'. Usually you do not need to specify the test method, you only need to tell stat_compare() whether you want to perform a parametric test or a nonparametric test, and stat_compare() will automatically choose the appropriate test method based on your data. For comparisons between two groups, the p-value is calculated by t-test (parametric) or Wilcoxon rank sum test (nonparametric). For comparisons among more than two groups, the p-value is calculated by One-way ANOVA (parametric) or Kruskal-Wallis test (nonparametric).
Using the DNA sequence and gene annotation files provided in ENSEMBL <https://www.ensembl.org/index.html>, the functions implemented in the package try to find the DNA sequences and protein sequences of any given genomic loci, and to find the genomic coordinates and protein sequences of any given protein locations, which are the frequent tasks in the analysis of genomic and proteomic data.
This package provides a fast and flexible general-purpose implementation of Particle Swarm Optimization (PSO) and Differential Evolution (DE) for solving global minimization problems is provided. It is designed to handle complex optimization tasks with nonlinear, non-differentiable, and multi-modal objective functions defined by users. There are five types of PSO variants: Particle Swarm Optimization (PSO, Eberhart & Kennedy, 1995) <doi:10.1109/MHS.1995.494215>, Quantum-behaved particle Swarm Optimization (QPSO, Sun et al., 2004) <doi:10.1109/CEC.2004.1330875>, Locally convergent rotationally invariant particle swarm optimization (LcRiPSO, Bonyadi & Michalewicz, 2014) <doi:10.1007/s11721-014-0095-1>, Competitive Swarm Optimizer (CSO, Cheng & Jin, 2015) <doi:10.1109/TCYB.2014.2322602> and Double exponential particle swarm optimization (DExPSO, Stehlik et al., 2024) <doi:10.1016/j.asoc.2024.111913>. For the DE algorithm, six types in Storn, R. & Price, K. (1997) <doi:10.1023/A:1008202821328> are included: DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, DE/rand_to-best/1 and DE/rand_to-best/2.