Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The main function of this package allows numerical vector objects to be displayed with their values in vulgar fractional form. This is convenient if patterns can then be more easily detected. In some cases replacing the components of a numeric vector by a rational approximation can also be expected to remove some component of round-off error. The main functions form a re-implementation of the functions fractions and rational of the MASS package, but using a radically improved programming strategy.
Robust analysis using forward search in linear and generalized linear regression models, as described in Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First Edition. New York: Springer.
Reads and writes ARFF files. ARFF (Attribute-Relation File Format) files are like CSV files, with a little bit of added meta information in a header and standardized NA values. They are quite often used for machine learning data sets and were introduced for the WEKA machine learning Java toolbox. See <https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable/> for further info on ARFF and for <http://www.cs.waikato.ac.nz/ml/weka/> for more info on WEKA'. farff gets rid of the Java dependency that RWeka enforces, and it is at least a faster reader (for bigger files). It uses readr as parser back-end for the data section of the ARFF file. Consistency with RWeka is tested on Github and Travis CI with hundreds of ARFF files from OpenML'.
Computes factorial A-, D- and E-optimal designs for two-colour cDNA microarray experiments.
Obtain Formula 1 data via the Jolpica API <https://jolpi.ca> and the unofficial API <https://www.formula1.com/en/timing/f1-live> via the fastf1 Python library <https://docs.fastf1.dev/>.
Shed light on black box machine learning models by the help of model performance, variable importance, global surrogate models, ICE profiles, partial dependence (Friedman J. H. (2001) <doi:10.1214/aos/1013203451>), accumulated local effects (Apley D. W. (2016) <doi:10.48550/arXiv.1612.08468>), further effects plots, interaction strength, and variable contribution breakdown (Gosiewska and Biecek (2019) <doi:10.48550/arXiv.1903.11420>). All tools are implemented to work with case weights and allow for stratified analysis. Furthermore, multiple flashlights can be combined and analyzed together.
This is a method for Allele-specific DNA Copy Number profiling for whole-Exome sequencing data. Given the allele-specific coverage and site biases at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples, as well as the site biases. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual. The implemented method is based on the paper: Chen, H., Jiang, Y., Maxwell, K., Nathanson, K. and Zhang, N. (under review). Allele-specific copy number estimation by whole Exome sequencing.
An implementation of the fair data adaptation with quantile preservation described in Plecko & Meinshausen (JMLR 2020, 21(242), 1-44). The adaptation procedure uses the specified causal graph to pre-process the given training and testing data in such a way to remove the bias caused by the protected attribute. The procedure uses tree ensembles for quantile regression. Instructions for using the methods are further elaborated in the corresponding JSS manuscript, see <doi:10.18637/jss.v110.i04>.
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, see Filzmoser and Viertl (2004) <doi:10.1007/s001840300269>, (2) testing fuzzy hypotheses based on crisp data, see Parchami et al. (2010) <doi:10.1007/s00362-008-0133-4>, and (3) testing fuzzy hypotheses based on fuzzy data, see Parchami et al. (2012) <doi:10.1007/s00362-010-0353-2>. In all cases, the fuzziness of data or / and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
Converts R data frames and sf spatial objects into JSON and GeoJSON strings. The core encoders are implemented in Rust using the extendr framework and are designed to efficiently serialize large tabular and spatial datasets. Returns serialized JSON text, allowing applications such as shiny or web APIs to transfer data to client-side JavaScript libraries without additional encoding overhead.
Fatty acid metabolic analysis aimed to the estimation of FA import (I), de novo synthesis (S), fractional contribution of the 13C-tracers (D0, D1, D2), elongation (E) and desaturation (Des) based on mass isotopologue data.
This package provides utilities to facilitate handling of Fude Polygon data downloadable from the Ministry of Agriculture, Forestry and Fisheries website <https://open.fude.maff.go.jp>.
Generate privacy-preserving synthetic datasets that mirror structure, types, factor levels, and missingness; export bundles for LLM workflows (data plus JSON schema and guidance); and build fake data directly from SQL database tables without reading real rows. Methods are related to approaches in Nowok, Raab and Dibben (2016) <doi:10.32614/RJ-2016-019> and the foundation-model overview by Bommasani et al. (2021) <doi:10.48550/arXiv.2108.07258>.
This package provides a fast and scalable linear mixed-effects model (LMM) estimation algorithm for analysis of single-cell differential expression. The algorithm uses summary-level statistics and requires less computer memory to fit the LMM.
FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints.
Fast functions for timestamp manipulation that avoid system calls and take shortcuts to facilitate operations on very large data.
Data-driven fMRI denoising with projection scrubbing (Pham et al (2022) <doi:10.1016/j.neuroimage.2023.119972>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing is also applicable to other outlier detection tasks involving high-dimensional data.
Defines a collection of functions to compute average power and sample size for studies that use the false discovery rate as the final measure of statistical significance.
Backends implementing the Future API <doi:10.32614/RJ-2021-048>, as defined by the future package, should use the tests provided by this package to validate that they meet the minimal requirements of the Future API. The tests can be performed easily from within R or from outside of R from the command line making it straightforward to include them in package tests and in Continuous Integration (CI) pipelines.
Easily use Font Awesome icons as shiny favicons (the icons that appear on browser tabs). Font Awesome (<https://fontawesome.com/>) is a popular set of icons that can be used in web pages. favawesome provides a simple way to use these icons as favicons in shiny applications and other HTML pages.
This package provides a friendly interface for modifying data frames with a sequence of piped commands built upon the tidyverse Wickham et al., (2019) <doi:10.21105/joss.01686> . The majority of commands wrap dplyr mutate statements in a convenient way to concisely solve common issues that arise when tidying small to medium data sets. Includes smart defaults and allows flexible selection of columns via tidyselect'.
Approximate false positive rate control in selection frequency for random forest using the methods described by Ender Konukoglu and Melanie Ganz (2014) <arXiv:1410.2838>. Methods for calculating the selection frequency threshold at false positive rates and selection frequency false positive rate feature selection.
This package provides functions that calculates common types of splitting criteria used in random forests for classification problems, as well as functions that make predictions based on a single tree or a Forest-R.K. model; the package also provides functions to generate importance plot for a Forest-R.K. model, as well as the 2D multidimensional-scaling plot of data points that are colour coded by their predicted class types by the Forest-R.K. model. This package is based on: Bernard, S., Heutte, L., Adam, S., (2008, ISBN:978-3-540-85983-3) "Forest-R.K.: A New Random Forest Induction Method", Fourth International Conference on Intelligent Computing, September 2008, Shanghai, China, pp.430-437.
This package creates dynamic grid layouts of images that can be included in Shiny applications and R markdown documents.