Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package infers cell type-specific expression based on co-expression similarity with known cell type marker genes. Can make accurate predictions using publicly available expression data, even when a cell type has not been isolated before.
Detection and visualizations of gross chromosomal aberrations using Affymetrix expression microarrays as input.
cosmiq is a tool for the preprocessing of liquid- or gas - chromatography mass spectrometry (LCMS/GCMS) data with a focus on metabolomics or lipidomics applications. To improve the detection of low abundant signals, cosmiq generates master maps of the mZ/RT space from all acquired runs before a peak detection algorithm is applied. The result is a more robust identification and quantification of low-intensity MS signals compared to conventional approaches where peak picking is performed in each LCMS/GCMS file separately. The cosmiq package builds on the xcmsSet object structure and can be therefore integrated well with the package xcms as an alternative preprocessing step.
Compare differential gene expression results with those from known cellular perturbations (such as gene knock-down, overexpression or small molecules) derived from the Connectivity Map. Such analyses allow not only to infer the molecular causes of the observed difference in gene expression but also to identify small molecules that could drive or revert specific transcriptomic alterations.
ChIP-Enrich and Poly-Enrich perform gene set enrichment testing using peaks called from a ChIP-seq experiment. The method empirically corrects for confounding factors such as the length of genes, and the mappability of the sequence surrounding genes.
consICA implements a data-driven deconvolution method – consensus independent component analysis (ICA) to decompose heterogeneous omics data and extract features suitable for patient diagnostics and prognostics. The method separates biologically relevant transcriptional signals from technical effects and provides information about the cellular composition and biological processes. The implementation of parallel computing in the package ensures efficient analysis of modern multicore systems.
Dimension Reduction for Array CGH Data with Minimal Information Loss.
CircSeqAlignTk is a toolkit for the analysis of RNA-Seq data derived from circular genome sequences, with a primary focus on viroids, circular RNAs typically consisting of a few hundred nucleotides. The toolkit supports an end-to-end analysis pipeline, from alignment to visualization.
The cellxgene data portal (https://cellxgene.cziscience.com/) provides a graphical user interface to collections of single-cell sequence data processed in standard ways to count matrix summaries. The cellxgenedp package provides an alternative, R-based inteface, allowind data discovery, viewing, and downloading.
This package compares genomic positions and genomic ranges from multiple experiments to extract common regions. The size of the analyzed region is adjustable as well as the number of experiences in which a feature must be present in a potential region to tag this region as a consensus region. In genomic analysis where feature identification generates a position value surrounded by a genomic range, such as ChIP-Seq peaks and nucleosome positions, the replication of an experiment may result in slight differences between predicted values. This package enables the conciliation of the results into consensus regions.
CellTrails is an unsupervised algorithm for the de novo chronological ordering, visualization and analysis of single-cell expression data. CellTrails makes use of a geometrically motivated concept of lower-dimensional manifold learning, which exhibits a multitude of virtues that counteract intrinsic noise of single cell data caused by drop-outs, technical variance, and redundancy of predictive variables. CellTrails enables the reconstruction of branching trajectories and provides an intuitive graphical representation of expression patterns along all branches simultaneously. It allows the user to define and infer the expression dynamics of individual and multiple pathways towards distinct phenotypes.
Methodology for supervised clustering of potentially many predictor variables, such as genes etc., in time series datasets Provides functions that help the user assigning genes to predefined set of model profiles.
Fast and efficient reading and writing of mass spectrometry imaging data files. Supports imzML and Analyze 7.5 formats. Provides ontologies for mass spectrometry imaging.
The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or seqArchR.
RNA-seq data generated by some library preparation methods, such as rRNA-depletion-based method and the SMART-seq method, might be contaminated by genomic DNA (gDNA), if DNase I disgestion is not performed properly during RNA preparation. CleanUpRNAseq is developed to check if RNA-seq data is suffered from gDNA contamination. If so, it can perform correction for gDNA contamination and reduce false discovery rate of differentially expressed genes.
This R package makes use of the exhaustive RESTful Web service API that has been implemented for the Cellabase database. It enable researchers to query and obtain a wealth of biological information from a single database saving a lot of time. Another benefit is that researchers can easily make queries about different biological topics and link all this information together as all information is integrated.
CaMutQC is able to filter false positive mutations generated due to technical issues, as well as to select candidate cancer mutations through a series of well-structured functions by labeling mutations with various flags. And a detailed and vivid filter report will be offered after completing a whole filtration or selection section. Also, CaMutQC integrates serveral methods and gene panels for Tumor Mutational Burden (TMB) estimation.
This package is a tool to predict the power of CyTOF experiments in the context of differential state analyses. The package provides a shiny app with two options to predict the power of an experiment: i. generation of in-sicilico CyTOF data, using users input ii. browsing in a grid of parameters for which the power was already precomputed.
This data package contains chimp and human brain data extracted from the ArrayExpress accession E-AFMX-2. Both human and chimp RNAs were run on human hgu95av2 Affymetrix arrays. It is a useful dataset for tutorials.
Causal network analysis methods for regulator prediction and network reconstruction from genome scale data.
This package provides genomic location, nearby CpG island and nearby gene information for common Illumina methylation array platforms.
After the clustering step of a single-cell RNAseq experiment, this package aims to suggest labels/cell types for the clusters, on the basis of similarity to a reference dataset. It requires a table of read counts per cell per gene, and a list of the cells belonging to each of the clusters, (for both test and reference data).
Annotation files of the formatted genomic annotation for ChromHMM. Three types of text files are included the chromosome sizes, region coordinates and anchors specifying the transcription start and end sites. The package includes data for two versions of the genome of humans and mice.
The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements.