Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The purpose of this package is to tests whether a given moment of the distribution of a given sample is finite or not. For heavy-tailed distributions with tail exponent b, only moments of order smaller than b are finite. Tail exponent and heavy- tailedness are notoriously difficult to ascertain. But the finiteness of moments (including fractional moments) can be tested directly. This package does that following the test suggested by Trapani (2016) <doi:10.1016/j.jeconom.2015.08.006>.
Uses three different correlation coefficients to calculate measurement-level adequate correlations in a feature matrix: Pearson product-moment correlation coefficient, Intraclass correlation and Cramer's V.
The main functions in this package are with_cache() and cached_read(). The former is a simple way to cache an R object into a file on disk, using cachem'. The latter is a wrapper around any standard read function, but caches both the output and the file list info. If the input file list info hasn't changed, the cache is used; otherwise, the original files are re-read. This can save time if the original operation requires reading from many files, and/or involves lots of processing.
When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>.
Routines for model-based functional cluster analysis for functional data with optional covariates. The idea is to cluster functional subjects (often called functional objects) into homogenous groups by using spline smoothers (for functional data) together with scalar covariates. The spline coefficients and the covariates are modelled as a multivariate Gaussian mixture model, where the number of mixtures corresponds to the number of clusters. The parameters of the model are estimated by maximizing the observed mixture likelihood via an EM algorithm (Arnqvist and Sjöstedt de Luna, 2019) <doi:10.48550/arXiv.1904.10265>. The clustering method is used to analyze annual lake sediment from lake Kassjön (Northern Sweden) which cover more than 6400 years and can be seen as historical records of weather and climate.
Analyzes the function calls in an R package and creates a hive plot of the calls, dividing them among functions that only make outgoing calls (sources), functions that have only incoming calls (sinks), and those that have both incoming calls and make outgoing calls (managers). Function calls can be mapped by their absolute numbers, their normalized absolute numbers, or their rank. FuncMap should be useful for comparing packages at a high level for their overall design. Plus, it's just plain fun. The hive plot concept was developed by Martin Krzywinski (www.hiveplot.com) and inspired this package. Note: this package is maintained for historical reasons. HiveR is a full package for creating hive plots.
Latent process embedding for functional network data with the Functional Adjacency Spectral Embedding. Fits smooth latent processes based on cubic spline bases. Also generates functional network data from three models, and evaluates a network generalized cross-validation criterion for dimension selection. For more information, see MacDonald, Zhu and Levina (2022+) <arXiv:2210.07491>.
Statistical tool set for population genetics. The package provides following functions: 1) empirical Bayes estimator of Fst and other measures of genetic differentiation, 2) regression analysis of environmental effects on genetic differentiation using bootstrap method, 3) interfaces to read and manipulate GENEPOP format data files and allele/haplotype frequency format files.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
R wrappers of C++ implementation of Faster K-Medoids clustering algorithms (FastPAM, FastCLARA and FastCLARANS) proposed in Erich Schubert, Peter J. Rousseeuw 2019 <doi:10.1007/978-3-030-32047-8_16>.
Determine and test the fixed-point property in binary mixture data. This package was originally developed in the context of detecting mixture of cognitive processing strategies, based on observed response time distributions. The method is explain in more detail by Van Maanen, De Jong, Van Rijn (2014) <doi:10.1371/journal.pone.0106113> and Van Maanen, Couto, Lebreton, (2016) <doi:10.1371/journal.pone.0167377>.
This package provides a programmatic interface to the Finnish Biodiversity Information Facility ('FinBIF') API (<https://api.laji.fi>). FinBIF aggregates Finnish biodiversity data from multiple sources in a single open access portal for researchers, citizen scientists, industry and government. FinBIF allows users of biodiversity information to find, access, combine and visualise data on Finnish plants, animals and microorganisms. The finbif package makes the publicly available data in FinBIF easily accessible to programmers. Biodiversity information is available on taxonomy and taxon occurrence. Occurrence data can be filtered by taxon, time, location and other variables. The data accessed are conveniently preformatted for subsequent analyses.
Extends the capabilities for flexible partitioning and model-based clustering available in the packages flexclust and flexmix to handle ordinal and mixed-with-ordinal data types via new distance, centroid and driver functions that make various assumptions regarding ordinality. Using them within the flex-scheme allows for easy comparisons across methods.
High-order functions for data manipulation : sort or group data, given one or more auxiliary functions. Functions are inspired by other pure functional programming languages ('Haskell mainly). The package also provides built-in function operators for creating compact anonymous functions, as well as the possibility to use the purrr package syntax.
Automated feature engineering functions tailored for credit scoring. It includes utilities for extracting structured features from timestamps, IP addresses, and email addresses, enabling enhanced predictive modeling for financial risk assessment.
Likelihood based analysis of 1-dimension functional data in a mixed-effects model framework. Matrix computation are approximated by semi-explicit operator equivalents with linear computational complexity. Markussen (2013) <doi:10.3150/11-BEJ389>.
This package provides a lightweight suite of functions for retrieving information about 5-digit or 2-digit US FIPS codes.
An implementation of a clustering algorithm for functional data based on adaptive density peak detection technique, in which the density is estimated by functional k-nearest neighbor density estimation based on a proposed semi-metric between functions. The proposed functional data clustering algorithm is computationally fast since it does not need iterative process. (Alex Rodriguez and Alessandro Laio (2014) <doi:10.1126/science.1242072>; Xiao-Feng Wang and Yifan Xu (2016) <doi:10.1177/0962280215609948>).
Special procedures for the imputation of missing fuzzy numbers are still underdeveloped. The goal of the package is to provide the new d-imputation method (DIMP for short, Romaniuk, M. and Grzegorzewski, P. (2023) "Fuzzy Data Imputation with DIMP and FGAIN" RB/23/2023) and covert some classical ones applied in R packages ('missForest','miceRanger','knn') for use with fuzzy datasets. Additionally, specially tailored benchmarking tests are provided to check and compare these imputation procedures with fuzzy datasets.
This package provides a collection of functions for trading and rebalancing financial instruments. It implements various technical indicators to analyse time series such as moving averages or stochastic oscillators.
Useful functions to standardize software outputs from ProteomeDiscoverer, Spectronaut, DIA-NN and MaxQuant on precursor, modified peptide and proteingroup level and to trace software differences for identifications such as varying proteingroup denotations for common precursor.
Query data hosted in Microsoft Fabric'. Provides helpers to open DBI connections to SQL endpoints of Lakehouse and Data Warehouse items; submit Data Analysis Expressions ('DAX') queries to semantic model datasets in Microsoft Fabric and Power BI'; read Delta Lake tables stored in OneLake ('Azure Data Lake Storage Gen2'); and execute Spark code via the Livy API'.
This package provides a "tabular-data-resource" (<https://specs.frictionlessdata.io/tabular-data-resource/>) is a simple format to describe a singular tabular data resource such as a CSV file. It includes support both for metadata such as author and title and a schema to describe the data, for example the types of the fields/columns in the data. Create a tabular-data-resource by providing a data.frame and specifying metadata. Write and read tabular-data-resources to and from disk.
Aim is to provide fractional Brownian vector field generation algorithm, Hurst parameter estimation method and fractional kriging model for multivariate data modeling.