Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to perform k-prototypes partitioning clustering for mixed variable-type data according to Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304.
This package provides various R programming tools for data manipulation, including:
medical unit conversions
combining objects
character vector operations
factor manipulation
obtaining information about R objects
generating fixed-width format files
extricating components of date and time objects
operations on columns of data frames
matrix operations
operations on vectors and data frames
value of last evaluated expression
wrapper for
samplethat ensures consistent behavior for both scalar and vector arguments
This package provides a collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.
This package can automatically extract statistical null-hypothesis significant testing (NHST) results from articles and recompute the p-values based on the reported test statistic and degrees of freedom to detect possible inconsistencies.
This package covers many important models used in marketing and micro-econometrics applications, including Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity, and Bayesian Analysis of Aggregate Random Coefficient Logit Models.
This package provides an implementation of a data cube extracted out of dplyr for backward compatibility.
This package provides qualitative methods for the validation of dynamic models. It contains
an orthogonal set of deviance measures for absolute, relative and ordinal scale and
approaches accounting for time shifts.
The first approach transforms time to take time delays and speed differences into account. The second divides the time series into interval units according to their main features and finds the longest common subsequence (LCS) using a dynamic programming algorithm.
This package provides a general purpose toolbox for personality, psychometric theory and experimental psychology. Functions are primarily for multivariate analysis and scale construction using factor analysis, principal component analysis, cluster analysis and reliability analysis, although others provide basic descriptive statistics. Item Response Theory is done using factor analysis of tetrachoric and polychoric correlations. Functions for analyzing data at multiple levels include within and between group statistics, including correlations and factor analysis. Functions for simulating and testing particular item and test structures are included. Several functions serve as a useful front end for structural equation modeling. Graphical displays of path diagrams, factor analysis and structural equation models are created using basic graphics.
This package lets you record test suite HTTP requests and replay them during future runs. It works by hooking into the webmockr R package for matching HTTP requests by various rules, and then caching real HTTP responses on disk in cassettes. Subsequent HTTP requests matching any previous requests in the same cassette use a cached HTTP response.
This package provides tools for the computation of matrix and scalar exponentiation.
This package provides tools to fit a variety of latent variable models, including confirmatory factor analysis, structural equation modeling and latent growth curve models.
This package offers an easy to use way to draw a Venn diagram with ggplot2.
Genomic analysis of model organisms often requires the use of databases based on human data or making comparisons to patient-derived resources. This requires converting genes between human and non-human analogues. The babelgene R package provides predicted gene orthologs/homologs for frequently studied model organisms in an R-friendly tidy/long format. The package integrates orthology assertion predictions sourced from multiple databases as compiled by the HGNC Comparison of Orthology Predictions (HCOP).
Create and customize interactive maps using the Leaflet JavaScript library and the htmlwidgets package. These maps can be used directly from the R console, from RStudio, in Shiny applications and R Markdown documents.
This package assists you in setting up and retrieving of HTTPS and SSH credentials for use with git and other services. For HTTPS remotes the package interfaces the git-credential utility which git uses to store HTTP usernames and passwords. For SSH remotes this package provides convenient functions to find or generate appropriate SSH keys. The package both helps the user to setup a local git installation, and also provides a back-end for git/ssh client libraries to authenticate with existing user credentials.
This package contains a number of comparative "phylogenetic" methods, mostly focusing on analysing diversification and character evolution. Contains implementations of "BiSSE" (Binary State Speciation and Extinction) and its unresolved tree extensions, "MuSSE" (Multiple State Speciation and Extinction), "QuaSSE", "GeoSSE", and "BiSSE-ness" Other included methods include Markov models of discrete and continuous trait evolution and constant rate speciation and extinction.
This package implements beta regression for modeling beta-distributed dependent variables on the open unit interval (0, 1), e.g., rates and proportions, see Cribari-Neto and Zeileis (2010) <doi:10.18637/jss.v034.i02>. Moreover, extended-support beta regression models can accommodate dependent variables with boundary observations at 0 and/or 1. For the classical beta regression model, alternative specifications are provided: Bias-corrected and bias-reduced estimation, finite mixture models, and recursive partitioning for beta regression, see <doi:10.18637/jss.v048.i11>.
This package provides tools to create some specific Space-Filling Design (SFD) and to test their quality.
This package performs complex string operations compactly and efficiently. It supports string interpolation jointly with over 50 string operations. It also enhances regular string functions (like grep() and co).
This is a package for variable elimination (Gaussian elimination, Fourier-Motzkin elimination), Moore-Penrose pseudoinverse, reduction to reduced row echelon form, value substitution, projecting a vector on the convex polytope described by a system of (in)equations, simplify systems by removing spurious columns and rows and collapse implied equalities, test if a matrix is totally unimodular, compute variable ranges implied by linear (in)equalities.
This package provides interactive visualizations for profiling R code.
This package provides a mutation analysis tool that discovers cancer driver genes with frequent mutations in protein signalling sites such as post-translational modifications (phosphorylation, ubiquitination, etc). The Poisson generalized linear regression model identifies genes where cancer mutations in signalling sites are more frequent than expected from the sequence of the entire gene. Integration of mutations with signalling information helps find new driver genes and propose candidate mechanisms to known drivers.
This package provides a ggplot2 extension for implementing parliament charts and several other useful visualizations.
This package provides the usual distribution functions, maximum likelihood inference and model diagnostics for univariate stationary extreme value mixture models. Also, there are provided kernel density estimation including various boundary corrected kernel density estimation methods and a wide choice of kernels, with cross-validation likelihood based bandwidth estimator. Reasonable consistency with the base functions in the evd package is provided, so that users can safely interchange most code.