Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Streamlines the post-processing, summarization, and visualization of outbreaker2 output via a suite of helper functions. Facilitates tidy manipulation of posterior samples, integration with case metadata, generation of diagnostic plots and summary statistics.
This package provides functions to analyze and visualize meristic and mensural phenotypic data in a comparative framework. The package implements an automated pipeline that summarizes traits, identifies diagnostic variables among groups, performs multivariate and univariate statistical analyses, and produces publication-ready graphics. An earlier implementation (v1.0.0) is described in Torres (2025) <doi:10.64898/2025.12.18.695244>.
This package provides analyse, interpret and understand noise pollution data. Data are typically regular time series measured with sound meter. The package is partially described in Fogola, Grasso, Masera and Scordino (2023, <DOI:10.61782/fa.2023.0063>).
Evaluates the Owen Q-function for an integer value of the degrees of freedom, by applying Owen's algorithm (1965) <doi:10.1093/biomet/52.3-4.437>. It is useful for the calculation of the power of equivalence tests.
Extend the tidymodels ecosystem <https://www.tidymodels.org/> to enable the creation of predictive models with offset terms. Models with offsets are most useful when working with count data or when fitting an adjustment model on top of an existing model with a prior expectation. The former situation is common in insurance where data is often weighted by exposures. The latter is common in life insurance where industry mortality tables are often used as a starting point for setting assumptions.
The aim of od is to provide tools and example datasets for working with origin-destination ('OD') datasets of the type used to describe aggregate urban mobility patterns (Carey et al. 1981) <doi:10.1287/trsc.15.1.32>. The package builds on functions for working with OD data in the package stplanr', (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053> with a focus on computational efficiency and support for the sf class system (Pebesma 2018) <doi:10.32614/RJ-2018-009>. With few dependencies and a simple class system based on data frames, the package is intended to facilitate efficient analysis of OD datasets and to provide a place for developing new functions. The package enables the creation and analysis of geographic entities representing large scale mobility patterns, from daily travel between zones in cities to migration between countries.
Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints. A unified interface to different R packages is provided. Optimization problems are transformed into equivalent formulations and solved by the respective package. For example, quadratic programming problems with linear, quadratic and rational constraints can be solved by augmented Lagrangian minimization using package alabama', or by sequential quadratic programming using solver slsqp'. Alternatively, they can be reformulated as optimization problems with second order cone constraints and solved with package cccp'.
Computes optimal cutpoints for diagnostic tests or continuous markers. Various approaches for selecting optimal cutoffs have been implemented, including methods based on cost-benefit analysis and diagnostic test accuracy measures (Sensitivity/Specificity, Predictive Values and Diagnostic Likelihood Ratios). Numerical and graphical output for all methods is easily obtained.
This package provides tools to analyze and infer orthology and paralogy relationships between glutamine synthetase proteins in seed plants.
Combine the air quality data analysis methods of openair with the JavaScript Leaflet (<https://leafletjs.com/>) library. Functionality includes plotting site maps, "directional analysis" figures such as polar plots, and air mass trajectories.
Allows users to download and analyze official data on Brazil's federal budget through the SPARQL endpoint provided by the Integrated Budget and Planning System ('SIOP'). This package enables access to detailed information on budget allocations and expenditures of the federal government, making it easier to analyze and visualize these data. Technical information on the Brazilian federal budget is available (Portuguese only) at <https://www1.siop.planejamento.gov.br/mto/>. The SIOP endpoint is available at <https://www1.siop.planejamento.gov.br/sparql/>.
Generate and analyze Optimal Channel Networks (OCNs): oriented spanning trees reproducing all scaling features characteristic of real, natural river networks. As such, they can be used in a variety of numerical experiments in the fields of hydrology, ecology and epidemiology. See Carraro et al. (2020) <doi:10.1002/ece3.6479> for a presentation of the package; Rinaldo et al. (2014) <doi:10.1073/pnas.1322700111> for a theoretical overview on the OCN concept; Furrer and Sain (2010) <doi:10.18637/jss.v036.i10> for the construct used.
Potential outliers are identified for all combinations of a dataset's variables. O3 plots are described in Unwin(2019) <doi:10.1080/10618600.2019.1575226>. The available methods are HDoutliers() from the package HDoutliers', FastPCS() from the package FastPCS', mvBACON() from robustX', adjOutlyingness() from robustbase', DectectDeviatingCells() from cellWise', covMcd() from robustbase'.
This package provides general purpose tools for helping users to implement steepest gradient descent methods for function optimization; for details see Ruder (2016) <arXiv:1609.04747v2>. Currently, the Steepest 2-Groups Gradient Descent and the Adaptive Moment Estimation (Adam) are the methods implemented. Other methods will be implemented in the future.
Computes the pdf, cdf, quantile function, hazard function and generating random numbers for Odd log-logistic family (OLL-G). This family have been developed by different authors in the recent years. See Alizadeh (2019) <doi:10.31801/cfsuasmas.542988> for example.
Sequential outlier identification for Gaussian mixture models using the distribution of Mahalanobis distances. The optimal number of outliers is chosen based on the dissimilarity between the theoretical and observed distributions of the scaled squared sample Mahalanobis distances. Also includes an extension for Gaussian linear cluster-weighted models using the distribution of studentized residuals. Doherty, McNicholas, and White (2025) <doi:10.48550/arXiv.2505.11668>.
Estimate location-shift models or rating-scale models accounting for response styles (RSRS) for the regression analysis of ordinal responses.
Extract results into R from the Observational Health Data Sciences and Informatics result database (see <https://ohdsi.github.io/Strategus/results-schema/index.html>) and generate reports/presentations via quarto that summarize results in HTML format. Learn more about OhdsiReportGenerator at <https://ohdsi.github.io/OhdsiReportGenerator/>.
This package provides methods to generate a design in the input space that sequentially fills the output space of a black-box function. The output space-filling designs are helpful in inverse design or feature-based modeling problems. See Wang, Shangkun, Adam P. Generale, Surya R. Kalidindi, and V. Roshan Joseph. (2024), Sequential designs for filling output spaces, Technometrics, 66, 65รข 76. for details. This work is supported by U.S. National Foundation grant CMMI-1921646.
Ordinal patterns describe the dynamics of a time series by looking at the ranks of subsequent observations. By comparing ordinal patterns of two times series, Schnurr (2014) <doi:10.1007/s00362-013-0536-8> defines a robust and non-parametric dependence measure: the ordinal pattern coefficient. Functions to calculate this and a method to detect a change in the pattern coefficient proposed in Schnurr and Dehling (2017) <doi:10.1080/01621459.2016.1164706> are provided. Furthermore, the package contains a function for calculating the ordinal pattern frequencies. Generalized ordinal patterns as proposed by Schnurr and Fischer (2022) <doi:10.1016/j.csda.2022.107472> are also considered.
An R wrapper for the OneMap.Sg API <https://www.onemap.gov.sg/docs/>. Functions help users query data from the API and return raw JSON data in "tidy" formats. Support is also available for users to retrieve data from multiple API calls and integrate results into single dataframes, without needing to clean and merge the data themselves. This package is best suited for users who would like to perform analyses with Singapore's spatial data without having to perform excessive data cleaning.
The oblique decision tree (ODT) uses linear combinations of predictors as partitioning variables in a decision tree. Oblique Decision Random Forest (ODRF) is an ensemble of multiple ODTs generated by feature bagging. Oblique Decision Boosting Tree (ODBT) applies feature bagging during the training process of ODT-based boosting trees to ensemble multiple boosting trees. All three methods can be used for classification and regression, and ODT and ODRF serve as supplements to the classical CART of Breiman (1984) <DOI:10.1201/9781315139470> and Random Forest of Breiman (2001) <DOI:10.1023/A:1010933404324> respectively.
Tailoring the optimal biomarker(s) for disease screening or diagnosis based on subjects individual characteristics.
Calculates the percentage coefficient of variation (CV) for mass spectrometry-based proteomic data. The CV can be calculated with the traditional formula for raw (non log transformed) intensity data, or log transformed data.