Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functionality to handle and project lat-long coordinates, easily download background maps and add a correct scale bar to OpenStreetMap plots in any map projection.
Allows you to easily execute expensive compute operations only once, and save the resulting object to disk.
The OLStrajr package provides comprehensive functions for ordinary least squares (OLS) trajectory analysis and case-by-case OLS regression as outlined in Carrig, Wirth, and Curran (2004) <doi:10.1207/S15328007SEM1101_9> and Rogosa and Saner (1995) <doi:10.3102/10769986020002149>. It encompasses two primary functions, OLStraj() and cbc_lm(). The OLStraj() function simplifies the estimation of individual growth curves over time via OLS regression, with options for visualizing both group-level and individual-level growth trajectories and support for linear and quadratic models. The cbc_lm() function facilitates case-by-case OLS estimates and provides unbiased mean population intercept and slope estimators by averaging OLS intercepts and slopes across cases. It further offers standard error calculations across bootstrap replicates and computation of 95% confidence intervals based on empirical distributions from the resampling processes.
This package provides a generalised data structure for fast and efficient loading and data munching of sparse omics data. The OmicFlow requires an up-front validated metadata template from the user, which serves as a guide to connect all the pieces together by aligning them into a single object that is defined as an omics class. Once this unified structure is established, users can perform manual subsetting, visualisation, and statistical analysis, or leverage the automated autoFlow method to generate a comprehensive report.
This package provides tools to segment fire scars and assess severity and vegetation regeneration using Otsu thresholding on Relative Burn Ratio (RBR) and differenced Normalized Burn Ratio (dNBR) image composites. Includes support for mosaic handling, polygon metrics, post-fire regeneration detection, day-of-year flagging, and validation against reference datasets. Designed for analysis of fire history in the Iberian Peninsula. Input Landsat composites follow the methodology described in Quintero et al. (2025) <doi:10.2139/ssrn.4929831>.
Computes odds ratios and 95% confidence intervals from a generalized linear model object. It also computes model significance with the chi-squared statistic and p-value and it computes model fit using a contingency table to determine the percent of observations for which the model correctly predicts the value of the outcome. Calculates model sensitivity and specificity.
Intended to assist in the choice of the sampling strategy to implement in a survey.
Calculate similarity between ontological terms and sets of ontological terms based on term information content and assess statistical significance of similarity in the context of a collection of terms sets - Greene et al. 2017 <doi:10.1093/bioinformatics/btw763>.
This package provides a collection of functions to facilitate analysis of proteomic data from Olink, primarily NPX data that has been exported from Olink Software. The functions also work on QUANT data from Olink by log- transforming the QUANT data. The functions are focused on reading data, facilitating data wrangling and quality control analysis, performing statistical analysis and generating figures to visualize the results of the statistical analysis. The goal of this package is to help users extract biological insights from proteomic data run on the Olink platform.
This package provides a database resource that is accessible through the Open Database Connectivity ('ODBC') API. This package uses the Resource model, with URL "resolver" and "client", to dynamically discover and make accessible tables stored in a MS SQL Server database. For more details see Marcon (2021) <doi:10.1371/journal.pcbi.1008880>.
Construct and evaluate directed tree structures that model the process of occurrence of genetic alterations during carcinogenesis as described in Szabo, A. and Boucher, K (2002) <doi:10.1016/S0025-5564(02)00086-X>.
The Open Bodem Index (OBI) is a method to evaluate the quality of soils of agricultural fields in The Netherlands and the sustainability of the current agricultural practices. The OBI score is based on four main criteria: chemical, physical, biological and management, which consist of more than 21 indicators. By providing results of a soil analysis and management info the OBIC package can be use to calculate he scores, indicators and derivatives that are used by the OBI. More information about the Open Bodem Index can be found at <https://openbodemindex.nl/>.
Generalise the starting point of the array index.
Fast, optimal, and reproducible clustering algorithms for circular, periodic, or framed data. The algorithms introduced here are based on a core algorithm for optimal framed clustering the authors have developed (Debnath & Song 2021) <doi:10.1109/TCBB.2021.3077573>. The runtime of these algorithms is O(K N log^2 N), where K is the number of clusters and N is the number of circular data points. On a desktop computer using a single processor core, millions of data points can be grouped into a few clusters within seconds. One can apply the algorithms to characterize events along circular DNA molecules, circular RNA molecules, and circular genomes of bacteria, chloroplast, and mitochondria. One can also cluster climate data along any given longitude or latitude. Periodic data clustering can be formulated as circular clustering. The algorithms offer a general high-performance solution to circular, periodic, or framed data clustering.
This package provides a programmatic interface to the OpenM++ microsimulation platform (<https://openmpp.org>). The primary goal of this package is to wrap the OpenM++ Web Service (OMS) to provide OpenM++ users a programmatic interface for the R language.
Splits initial strata into refined strata that optimize covariate balance. For more information, please see Brumberg, Small, and Rosenbaum (2024) <doi:10.1093/biomtc/ujae061>. To solve the linear program, the Gurobi commercial optimization software is recommended, but not required. The gurobi R package can be installed following the instructions at <https://docs.gurobi.com/projects/optimizer/en/current/reference/r/setup.html> after claiming your free academic license at <https://www.gurobi.com/academia/academic-program-and-licenses/>.
Generate systems of ordinary differential equations (ODE) and integrate them, using a domain specific language (DSL). The DSL uses R's syntax, but compiles to C in order to efficiently solve the system. A solver is not provided, but instead interfaces to the packages deSolve and dde are generated. With these, while solving the differential equations, no allocations are done and the calculations remain entirely in compiled code. Alternatively, a model can be transpiled to R for use in contexts where a C compiler is not present. After compilation, models can be inspected to return information about parameters and outputs, or intermediate values after calculations. odin is not targeted at any particular domain and is suitable for any system that can be expressed primarily as mathematical expressions. Additional support is provided for working with delays (delay differential equations, DDE), using interpolated functions during interpolation, and for integrating quantities that represent arrays.
Help and demo in Spanish of the orloca package. Ayuda y demo en espanol del paquete orloca. Objetos y metodos para manejar y resolver el problema de localizacion de suma minima, tambien conocido como problema de Fermat-Weber. El problema de localizacion de suma minima busca un punto tal que la suma ponderada de las distancias a los puntos de demanda se minimice. Vease "The Fermat-Weber location problem revisited" por Brimberg, Mathematical Programming, 1, pag. 71-76, 1995. <DOI: 10.1007/BF01592245>. Se usan algoritmos generales de optimizacion global para resolver el problema, junto con el metodo especifico Weiszfeld, vease "Sur le point pour lequel la Somme des distance de n points donnes est minimum", por Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pag. 355-386, 1937 o "On the point for which the sum of the distances to n given points is minimum", por E. Weiszfeld y F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.
This package provides a set of standard benchmark optimization functions for R and a common interface to sample them.
Estimates optimal number of biomarkers for two-group classification based on microarray data.
The openFDA API facilitates access to Federal Drug Agency (FDA) data on drugs, devices, foodstuffs, tobacco, and more with httr2'. This package makes the API easily accessible, returning objects which the user can convert to JSON data and parse. Kass-Hout TA, Xu Z, Mohebbi M et al. (2016) <doi:10.1093/jamia/ocv153>.
This contains functions and data used by the Open Visualization Academy classes on data processing and visualization. The tutorial included with this package requires the gradethis package which can be installed using "remotes::install_github('rstudio/gradethis')".
This package provides implementations of some of the most important outlier detection algorithms. Includes a tutorial mode option that shows a description of each algorithm and provides a step-by-step execution explanation of how it identifies outliers from the given data with the specified input parameters. References include the works of Azzedine Boukerche, Lining Zheng, and Omar Alfandi (2020) <doi:10.1145/3381028>, Abir Smiti (2020) <doi:10.1016/j.cosrev.2020.100306>, and Xiaogang Su, Chih-Ling Tsai (2011) <doi:10.1002/widm.19>.
Helps to create ggplot2 charts in the style used by the National Road Safety Observatory (ONSV). The package includes functions to customize ggplot2 objects with new theme and colors.