Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Wald Test for nonlinear restrictions on model parameters and confidence intervals for nonlinear functions of parameters using delta-method. Applicable after ANY model, provided parameters estimates and their covariance matrix are available.
Estimators and variance estimators tailored to the NILS hierarchical design (Adler et al. 2020, <https://res.slu.se/id/publ/105630>; Grafström et al. 2023, <https://res.slu.se/id/publ/128235>). The National Inventories of Landscapes in Sweden (NILS) is a long-term national monitoring program that collects, analyses and presents data on Swedish nature, covering both common and rare habitats <https://www.slu.se/om-slu/organisation/institutioner/skoglig-resurshushallning/miljoanalys/nils/>.
This package provides functions for nonlinear time series analysis. This package permits the computation of the most-used nonlinear statistics/algorithms including generalized correlation dimension, information dimension, largest Lyapunov exponent, sample entropy and Recurrence Quantification Analysis (RQA), among others. Basic routines for surrogate data testing are also included. Part of this work was based on the book "Nonlinear time series analysis" by Holger Kantz and Thomas Schreiber (ISBN: 9780521529020).
This package provides a Bayesian approach to estimate the number of occurred-but-not-yet-reported cases from incomplete, time-stamped reporting data for disease outbreaks. NobBS learns the reporting delay distribution and the time evolution of the epidemic curve to produce smoothed nowcasts in both stable and time-varying case reporting settings, as described in McGough et al. (2020) <doi:10.1371/journal.pcbi.1007735>.
This package provides a unified, programmatic interface for searching, browsing, and retrieving metadata from various international organization data repositories that use the National Data Archive ('NADA') software, such as the World Bank, FAO', and the International Household Survey Network ('IHSN'). Functions allow users to discover available data collections, country codes, and access types, perform complex searches using keyword and spatial/temporal filters, and retrieve detailed study information, including file lists and variable-level data dictionaries. It simplifies access to microdata for researchers and policy analysts globally.
Estimation of relatively complex nonlinear mixed-effects models, including the Sigmoidal Mixed Model and the Piecewise Linear Mixed Model with abrupt or smooth transition, through a single intuitive line of code and with automated generation of starting values.
Piecewise constant hazard functions are used to flexibly model survival distributions with non-proportional hazards and to simulate data from the specified distributions. A function to calculate weighted log-rank tests for the comparison of two hazard functions is included. Also, a function to calculate a test using the maximum of a set of test statistics from weighted log-rank tests (MaxCombo test) is provided. This test utilizes the asymptotic multivariate normal joint distribution of the separate test statistics. The correlation is estimated from the data. These methods are described in Ristl et al. (2021) <doi:10.1002/pst.2062>. Finally, a function is provided for the estimation and inferential statistics of various parameters that quantify the difference between two survival curves. Eligible parameters are differences in survival probabilities, log survival probabilities, complementary log log (cloglog) transformed survival probabilities, quantiles of the survival functions, log transformed quantiles, restricted mean survival times, as well as an average hazard ratio, the Cox model score statistic (logrank statistic), and the Cox-model hazard ratio. Adjustments for multiple testing and simultaneous confidence intervals are calculated using a multivariate normal approximation to the set of selected parameters.
Training of neural networks using backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.
In the working paper titled "Why You Should Never Use the Hodrick-Prescott Filter", James D. Hamilton proposes a new alternative to economic time series filtering. The neverhpfilter package provides functions and data for reproducing his work. Hamilton (2017) <doi:10.3386/w23429>.
This package provides some functions to get Korean text sample from news articles in Naver which is popular news portal service <https://news.naver.com/> in Korea.
An interactive document on the topic of naive Bayes classification analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/NBShiny/>.
Statistical inference with non-probability samples when auxiliary information from external sources such as probability samples or population totals or means is available. The package implements various methods such as inverse probability (propensity score) weighting, mass imputation and doubly robust approach. Details can be found in: Chen et al. (2020) <doi:10.1080/01621459.2019.1677241>, Yang et al. (2020) <doi:10.1111/rssb.12354>, Kim et al. (2021) <doi:10.1111/rssa.12696>, Yang et al. (2021) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm> and Wu (2022) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm>. For details on the package and its functionalities see <doi:10.48550/arXiv.2504.04255>.
This package provides tools for visual inference. Generate null data sets and null plots using permutation and simulation. Calculate distance metrics for a lineup, and examine the distributions of metrics.
The NetCoupler algorithm identifies potential direct effects of correlated, high-dimensional variables formed as a network with an external variable. The external variable may act as the dependent/response variable or as an independent/predictor variable to the network.
Nonparametric maximum likelihood estimation or Gaussian quadrature for overdispersed generalized linear models and variance component models.
This package provides a collection of network analytic (convenience) functions which are missing in other standard packages. This includes triad census with attributes <doi:10.1016/j.socnet.2019.04.003>, core-periphery models <doi:10.1016/S0378-8733(99)00019-2>, and several graph generators. Most functions are build upon igraph'.
Generates LaTeX code for drawing well-formatted neural network diagrams with TikZ'. Users have to define number of neurons on each layer, and optionally define neuron connections they would like to keep or omit, layers they consider to be oversized and neurons they would like to draw with lighter color. They can also specify the title of diagram, color, opacity of figure, labels of layers, input and output neurons. In addition, this package helps to produce LaTeX code for drawing activation functions which are crucial in neural network analysis. To make the code work in a LaTeX editor, users need to install and import some TeX packages including TikZ in the setting of TeX file.
Efficient tools for preparation, checking and post-processing of data in PK/PD (pharmacokinetics/pharmacodynamics) modeling, with focus on use of Nonmem, including consistency, traceability, and Nonmem compatibility of Data. Rigorously checks final Nonmem datasets. Implemented in data.table', but easily integrated with base and tidyverse'.
Datasets and functions to benchmark (convergence, speed, ease of use) R packages dedicated to regression with neural networks (no classification in this version). The templates for the tested packages are available in the R, R Markdown and HTML formats at <https://github.com/pkR-pkR/NNbenchmarkTemplates> and <https://theairbend3r.github.io/NNbenchmarkWeb/index.html>. The submitted article to the R-Journal can be read at <https://www.inmodelia.com/gsoc2020.html>.
Setup, run and analyze NetLogo (<https://www.netlogo.org>) model simulations in R'. nlrx experiments use a similar structure as NetLogos Behavior Space experiments. However, nlrx offers more flexibility and additional tools for running and analyzing complex simulation designs and sensitivity analyses. The user defines all information that is needed in an intuitive framework, using class objects. Experiments are submitted from R to NetLogo via XML files that are dynamically written, based on specifications defined by the user. By nesting model calls in future environments, large simulation design with many runs can be executed in parallel. This also enables simulating NetLogo experiments on remote high performance computing machines. In order to use this package, Java and NetLogo (>= 5.3.1) need to be available on the executing system.
Non-parametric dimensionality reduction function. Reduction with and without feature selection. Plot functions. Automated feature selections. Kosztyan et. al. (2024) <doi:10.1016/j.eswa.2023.121779>.
This package provides tools to create time series and geometry NetCDF files.
Tidied data from the ASA 2006 data expo, as well as a number of useful other related data sets.
In semi-structured interviews that use the framework method, it is not always clear how refinements to interview questions affect the decision of when to stop interviews. The trend of novel and duplicate interview codes (novel codes are information that other interviewees have not previously mentioned) provides insight into the richness of qualitative information. This package provides tools to visualise when refinements occur and how that affects the trends of novel and duplicate codes. These visualisations, when used progressively as new interviews are finished, can help the researcher to decide on a stopping point for their interviews. For context, see Wong et al., (2023) <doi:10.1177/16094069231220773>.