Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functionalities for modelling functional data with multidimensional inputs, multivariate functional data, and non-separable and/or non-stationary covariance structure of function-valued processes. In addition, there are functionalities for functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure depends on functional covariates. The development version of the package can be found on <https://github.com/gpfda/GPFDA-dev>.
Goodness-of-fit tests for skew-normal, gamma, inverse Gaussian, log-normal, Weibull', Frechet', Gumbel, normal, multivariate normal, Cauchy, Laplace or double exponential, exponential and generalized Pareto distributions. Parameter estimators for gamma, inverse Gaussian and generalized Pareto distributions.
Multidimensional systems allow complex queries to be carried out in an easy way. The geographical dimension, together with the temporal dimension, plays a fundamental role in multidimensional systems. Through this package, vector geographic data layers can be associated to the attributes of geographic dimensions, so that the results of multidimensional queries can be obtained directly as vector layers. The multidimensional structures on which we can define the queries can be created from a flat table or imported directly using functions from this package.
Helper functions provide an accurate imputation algorithm for reconstructing the missing segment in a multi-variate data streams. Inspired by single-shot learning, it reconstructs the missing segment by identifying the first similar segment in the stream. Nevertheless, there should be one column of data available, i.e. a constraint column. The values of columns can be characters (A, B, C, etc.). The result of the imputed dataset will be returned a .csv file. For more details see Reza Rawassizadeh (2019) <doi:10.1109/TKDE.2019.2914653>.
This package provides a zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space.
GWAS R API Data Download. This package provides easy access to the NHGRI'-'EBI GWAS Catalog data by accessing the REST API <https://www.ebi.ac.uk/gwas/rest/docs/api/>.
Homogenize GNSS (Global Navigation Satellite System) time-series. The general model is a segmentation in the mean model including a periodic function and considering monthly variances, see Quarello (2020) <arXiv:2005.04683>.
Interface for extra high-dimensional smooth functions for Generalized Additive Models for Location Scale and Shape (GAMLSS) including (adaptive) lasso, ridge, elastic net and least angle regression.
The vegan package includes several functions for adding features to ordination plots: ordiarrows(), ordiellipse(), ordihull(), ordispider() and ordisurf(). This package adds these same features to ordination plots made with ggplot2'. In addition, gg_ordibubble() sizes points relative to the value of an environmental variable.
Send error reports to the Google Error Reporting service <https://cloud.google.com/error-reporting/> and view errors and assign error status in the Google Error Reporting user interface.
Many tools for Geometric Data Analysis (Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0>), such as MCA variants (Specific Multiple Correspondence Analysis, Class Specific Analysis), many graphical and statistical aids to interpretation (structuring factors, concentration ellipses, inductive tests, bootstrap validation, etc.) and multiple-table analysis (Multiple Factor Analysis, between- and inter-class analysis, Principal Component Analysis and Correspondence Analysis with Instrumental Variables, etc.).
Geostatistical modelling facilities using SpatRaster and SpatVector objects are provided. Non-Gaussian models are fit using INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The RandomFields package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>.
Mapper-based survival analysis with transcriptomics data is designed to carry out. Mapper-based survival analysis is a modification of Progression Analysis of Disease (PAD) where survival data is taken into account in the filtering function. More details in: J. Fores-Martos, B. Suay-Garcia, R. Bosch-Romeu, M.C. Sanfeliu-Alonso, A. Falco, J. Climent, "Progression Analysis of Disease with Survival (PAD-S) by SurvMap identifies different prognostic subgroups of breast cancer in a large combined set of transcriptomics and methylation studies" <doi:10.1101/2022.09.08.507080>.
Execute Latent Class Analysis (LCA) and Latent Class Regression (LCR) by using Generalized Structured Component Analysis (GSCA). This is explained in Ryoo, Park, and Kim (2019) <doi:10.1007/s41237-019-00084-6>. It estimates the parameters of latent class prevalence and item response probability in LCA with a single line comment. It also provides graphs of item response probabilities. In addition, the package enables to estimate the relationship between the prevalence and covariates.
Allows the user to animate text within rmarkdown documents and shiny applications. The animations are activated using the Animate.css library. See <https://animate.style/> for more information.
Fast scalable Gaussian process approximations, particularly well suited to spatial (aerial, remote-sensed) and environmental data, described in more detail in Katzfuss and Guinness (2017) <doi:10.48550/arXiv.1708.06302>. Package also contains a fast implementation of the incomplete Cholesky decomposition (IC0), based on Schaefer et al. (2019) <doi:10.48550/arXiv.1706.02205> and MaxMin ordering proposed in Guinness (2018) <doi:10.48550/arXiv.1609.05372>.
Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the superpc R package <https://cran.r-project.org/package=superpc>).
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <https://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html> is provided.
This package provides facilities to read, write and validate geographic metadata defined with ISO TC211 / OGC ISO geographic information metadata standards, and encoded using the ISO 19139 and ISO 19115-3 (XML) standard technical specifications. This includes ISO 19110 (Feature cataloguing), 19115 (dataset metadata), 19119 (service metadata) and 19136 (GML). Other interoperable schemas from the OGC are progressively supported as well, such as the Sensor Web Enablement (SWE) Common Data Model, the OGC GML Coverage Implementation Schema (GMLCOV), or the OGC GML Referenceable Grid (GMLRGRID).
Statistical functions to fit, validate and describe a Generalized Waring Regression Model (GWRM).
An S3 class groupedHyperframe that inherits from hyper data frame. Batch processes and aggregation of hyper column(s) over a nested grouping structure.
This package provides a procedure that uses target-decoy competition (or knockoffs) to reject multiple hypotheses in the presence of group structure. The procedure controls the false discovery rate (FDR) at a user-specified threshold.
Population-averaged models have been increasingly used in the design and analysis of cluster randomized trials (CRTs). To facilitate the applications of population-averaged models in CRTs, the package implements the generalized estimating equations (GEE) and matrix-adjusted estimating equations (MAEE) approaches to jointly estimate the marginal mean models correlation models both for general CRTs and stepped wedge CRTs. Despite the general GEE/MAEE approach, the package also implements a fast cluster-period GEE method by Li et al. (2022) <doi:10.1093/biostatistics/kxaa056> specifically for stepped wedge CRTs with large and variable cluster-period sizes and gives a simple and efficient estimating equations approach based on the cluster-period means to estimate the intervention effects as well as correlation parameters. In addition, the package also provides functions for generating correlated binary data with specific mean vector and correlation matrix based on the multivariate probit method in Emrich and Piedmonte (1991) <doi:10.1080/00031305.1991.10475828> or the conditional linear family method in Qaqish (2003) <doi:10.1093/biomet/90.2.455>.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.