Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate code for use with the Optical Mark Recognition free software Auto Multiple Choice (AMC). More specifically, this package provides functions that use as input the question and answer texts, and output the LaTeX code for AMC.
Wraps the AT Protocol (Authenticated Transfer Protocol) behind Bluesky <https://bsky.social>. Functions can be used for, among others, retrieving posts and followers from the network or posting content.
This package provides a novel parametrization of log transformation and a shift parameter to automate the transformation process are proposed in R package AutoTransQF based on Feng et al. (2016). Please read Feng et al. (2016) <doi:10.1002/sta4.104> for more details of the method.
Simplify creating multiple, related leaflet maps across tabs for a shiny application. Users build lists of any polygons, points, and polylines needed for the project, use the map_server() function to assign built lists and other chosen aesthetics into each tab, and the package leverages modules to generate all map tabs.
Create aliases for other R names or arbitrarily complex R expressions. Accessing the alias acts as-if the aliased expression were invoked instead, and continuously reflects the current value of that expression: updates to the original expression will be reflected in the alias; and updates to the alias will automatically be reflected in the original expression.
The aligned rank transform for nonparametric factorial ANOVAs as described by Wobbrock, Findlater, Gergle, and Higgins (2011) <doi:10.1145/1978942.1978963>. Also supports aligned rank transform contrasts as described by Elkin, Kay, Higgins, and Wobbrock (2021) <doi:10.1145/3472749.3474784>.
This package provides easy installation and loading of core ArcGIS location services packages arcgislayers', arcgisutils', arcgisgeocode', and arcgisplaces'. Enabling developers to interact with spatial data and services from ArcGIS Online', ArcGIS Enterprise', and ArcGIS Platform'. Learn more about the arcgis meta-package at <https://developers.arcgis.com/r-bridge/>.
This package provides a function to calibrate variant effect scores against evidence strength categories defined by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines. The method computes likelihood ratios of pathogenicity via kernel density estimation of pathogenic and benign score distributions, and derives score intervals corresponding to ACMG/AMP evidence levels. This enables researchers and clinical geneticists to interpret functional and computational variant scores in a reproducible and standardised manner. For details, see Badonyi and Marsh (2025) <doi:10.1093/bioinformatics/btaf503>.
This package provides functions to implement model selection and multimodel inference based on Akaike's information criterion (AIC) and the second-order AIC (AICc), as well as their quasi-likelihood counterparts (QAIC, QAICc) from various model object classes. The package implements classic model averaging for a given parameter of interest or predicted values, as well as a shrinkage version of model averaging parameter estimates or effect sizes. The package includes diagnostics and goodness-of-fit statistics for certain model types including those of unmarkedFit classes estimating demographic parameters after accounting for imperfect detection probabilities. Some functions also allow the creation of model selection tables for Bayesian models of the bugs', rjags', and jagsUI classes. Functions also implement model selection using BIC. Objects following model selection and multimodel inference can be formatted to LaTeX using xtable methods included in the package.
This package provides adaptive direct sparse regression for high-dimensional multimodal data with heterogeneous missing patterns and measurement errors. AdapDISCOM extends the DISCOM framework with modality-specific adaptive weighting to handle varying data structures and error magnitudes across blocks. The method supports flexible block configurations (any K blocks) and includes robust variants for heavy-tailed distributions ('AdapDISCOM'-Huber) and fast implementations for large-scale applications (Fast-'AdapDISCOM'). Designed for realistic multimodal scenarios where different data sources exhibit distinct missing data patterns and contamination levels. Diakité et al. (2025) <doi:10.48550/arXiv.2508.00120>.
This package provides tools for the multiscale spatial analysis of multivariate data. Several methods are based on the use of a spatial weighting matrix and its eigenvector decomposition (Moran's Eigenvectors Maps, MEM). Several approaches are described in the review Dray et al (2012) <doi:10.1890/11-1183.1>.
This package provides a unified and straightforward interface for performing a variety of meta-analysis methods directly from user data. Users can input a data frame, specify key parameters, and effortlessly execute and compare multiple common meta-analytic models. Designed for immediate usability, the package facilitates transparent, reproducible research without manual implementation of each analytical method. Ideal for researchers aiming for efficiency and reproducibility, it streamlines workflows from data preparation to results interpretation.
Leveraging Monte Carlo simulations, this package provides tools for diagnosing regression models. It implements a parametric bootstrap framework to compute statistics, generates diagnostic envelopes to assess goodness-of-fit, and evaluates type I error control for Wald tests. By simulating data under the assumption that the model is true, it helps to identify model mis-specifications and enhances the reliability of the model inferences.
The Ata method (Yapar et al. (2019) <doi:10.15672/hujms.461032>), an alternative to exponential smoothing (described in Yapar (2016) <doi:10.15672/HJMS.201614320580>, Yapar et al. (2017) <doi:10.15672/HJMS.2017.493>), is a new univariate time series forecasting method which provides innovative solutions to issues faced during the initialization and optimization stages of existing forecasting methods. Forecasting performance of the Ata method is superior to existing methods both in terms of easy implementation and accurate forecasting. It can be applied to non-seasonal or seasonal time series which can be decomposed into four components (remainder, level, trend and seasonal). This methodology performed well on the M3 and M4-competition data. This package was written based on Ali Sabri Taylanâ s PhD dissertation.
Create and evaluate models using tidymodels and h2o <https://h2o.ai/>. The package enables users to specify h2o as an engine for several modeling methods.
Programmatic interface to the NASA Application for Extracting and Exploring Analysis Ready Samples services (AppEEARS; <https://appeears.earthdatacloud.nasa.gov/>). The package provides easy access to analysis ready earth observation data in R.
This package provides a few functions aim to provide a statistic tool for three purposes. First, simulate kin pairs data based on the assumption that every trait is affected by genetic effects (A), common environmental effects (C) and unique environmental effects (E).Second, use kin pairs data to fit an ACE model and get model fit output.Third, calculate power of A estimate given a specific condition. For the mechanisms of power calculation, we suggest to check Visscher(2004)<doi:10.1375/twin.7.5.505>.
An implementation of the additive polynomial (AP) design matrix. It constructs and appends an AP design matrix to a data frame for use with longitudinal data subject to seasonality.
This package implements wavelet-based approaches for describing population admixture. Principal Components Analysis (PCA) is used to define the population structure and produce a localized admixture signal for each individual. Wavelet summaries of the PCA output describe variation present in the data and can be related to population-level demographic processes. For more details, see J Sanderson, H Sudoyo, TM Karafet, MF Hammer and MP Cox. 2015. Reconstructing past admixture processes from local genomic ancestry using wavelet transformation. Genetics 200:469-481 <doi:10.1534/genetics.115.176842>.
Adaptive Rejection Sampling, Original version.
Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arXiv:1904.03272>.
Point-scale variogram deconvolution from irregular/regular spatial support according to Goovaerts, P., (2008) <doi: 10.1007/s11004-007-9129-1>; ordinary area-to-area (co)Kriging and area-to-point (co)Kriging.
This package implements a constrained version of hierarchical agglomerative clustering, in which each observation is associated to a position, and only adjacent clusters can be merged. Typical application fields in bioinformatics include Genome-Wide Association Studies or Hi-C data analysis, where the similarity between items is a decreasing function of their genomic distance. Taking advantage of this feature, the implemented algorithm is time and memory efficient. This algorithm is described in Ambroise et al (2019) <doi:10.1186/s13015-019-0157-4>.
Sets the alpha level for coefficients in a regression model as a decreasing function of the sample size through the use of Jeffreys Approximate Bayes factor. You tell alphaN() your sample size, and it tells you to which value you must lower alpha to avoid Lindley's Paradox. For details, see Wulff and Taylor (2024) <doi:10.1177/14761270231214429>.