Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates population-level analysis of ligand-receptor (LR) interactions using large-scale single-cell transcriptomic data. Identifies significant LR pairs and quantifies their interactions through correlation-based filtering and projection score computations. Designed for large-sample single-cell studies, the package employs statistical modeling, including linear regression, to investigate LR relationships between cell types. It provides a systematic framework for understanding cell-cell communication, uncovering regulatory interactions and signaling mechanisms. Offers tools for LR pair-level, sample-level, and differential interaction analyses, with comprehensive visualization support to aid biological interpretation. The methodology is described in a manuscript currently under review and will be referenced here once published or publicly available.
PHATE is a tool for visualizing high dimensional single-cell data with natural progressions or trajectories. PHATE uses a novel conceptual framework for learning and visualizing the manifold inherent to biological systems in which smooth transitions mark the progressions of cells from one state to another. To see how PHATE can be applied to single-cell RNA-seq datasets from hematopoietic stem cells, human embryonic stem cells, and bone marrow samples, check out our publication in Nature Biotechnology at <doi:10.1038/s41587-019-0336-3>.
An interface to simplify organizing parameters used in a package, using external configuration files. This attempts to provide a cleaner alternative to options().
Learn optimal policies via doubly robust empirical welfare maximization over trees. Given doubly robust reward estimates, this package finds a rule-based treatment prescription policy, where the policy takes the form of a shallow decision tree that is globally (or close to) optimal.
Enables the removal of training data from fitted R models while retaining predict functionality. The purged models are more portable as their memory footprints do not scale with the training sample size.
Builds and runs c++ code for classes that encapsulate state space model, particle filtering algorithm pairs. Algorithms include the Bootstrap Filter from Gordon et al. (1993) <doi:10.1049/ip-f-2.1993.0015>, the generic SISR filter, the Auxiliary Particle Filter from Pitt et al (1999) <doi:10.2307/2670179>, and a variety of Rao-Blackwellized particle filters inspired by Andrieu et al. (2002) <doi:10.1111/1467-9868.00363>. For more details on the c++ library pf', see Brown (2020) <doi:10.21105/joss.02599>.
Many datasets and a set of graphics (based on ggplot2), statistics, effect sizes and hypothesis tests are provided for analysing paired data with S4 class.
Data from All the World's Primates relational SQL database and other tabular datasets are made available via drivers and connection functions. Additionally we provide several functions and examples to facilitate the merging and aggregation of these tabular inputs.
This package provides the tools needed to benchmark the R2 value corresponding to a certain acceptable noise level while also providing a rescaling function based on that noise level yielding a new value of R2 we refer to as R2k which is independent of both the number of degrees of freedom and the noise distribution function.
The original definition of the two and three dimensional Kolmogorov-Smirnov two-sample test statistics given by Peacock (1983) is implemented. Two R-functions: peacock2 and peacock3, are provided to compute the test statistics in two and three dimensional spaces, respectively. Note the Peacock test is different from the Fasano and Franceschini test (1987). The latter is a variant of the Peacock test.
This package provides a system to increase the efficiency of dynamic web-scraping with RSelenium by leveraging parallel processing. You provide a function wrapper for your RSelenium scraping routine with a set of inputs, and parsel runs it in several browser instances. Chunked input processing as well as error catching and logging ensures seamless execution and minimal data loss, even when unforeseen RSelenium errors occur. You can additionally build safe scraping functions with minimal coding by utilizing constructor functions that act as wrappers around RSelenium methods.
Estimation of the number of colonization events between islands of the same archipelago for a species. It uses rarefaction curves to control for both field and genetic sample sizes as it was described in Coello et al. (2022) <doi:10.1111/jbi.14341>.
Construct and analyze projection matrix models from a demography study of marked individuals classified by age or stage. The package covers methods described in Matrix Population Models by Caswell (2001) and Quantitative Conservation Biology by Morris and Doak (2002).
Identification, model fitting and estimation for time series with periodic structure. Additionally, procedures for simulation of periodic processes and real data sets are included. Hurd, H. L., Miamee, A. G. (2007) <doi:10.1002/9780470182833> Box, G. E. P., Jenkins, G. M., Reinsel, G. (1994) <doi:10.1111/jtsa.12194> Brockwell, P. J., Davis, R. A. (1991, ISBN:978-1-4419-0319-8) Bretz, F., Hothorn, T., Westfall, P. (2010, ISBN: 9780429139543) Westfall, P. H., Young, S. S. (1993, ISBN:978-0-471-55761-6) Bloomfield, P., Hurd, H. L.,Lund, R. (1994) <doi:10.1111/j.1467-9892.1994.tb00181.x> Dehay, D., Hurd, H. L. (1994, ISBN:0-7803-1023-3) Vecchia, A. (1985) <doi:10.1080/00401706.1985.10488076> Vecchia, A. (1985) <doi:10.1111/j.1752-1688.1985.tb00167.x> Jones, R., Brelsford, W. (1967) <doi:10.1093/biomet/54.3-4.403> Makagon, A. (1999) <https://www.math.uni.wroc.pl/~pms/files/19.2/Article/19.2.5.pdf> Sakai, H. (1989) <doi:10.1111/j.1467-9892.1991.tb00069.x> Gladyshev, E. G. (1961) <https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=24851> Ansley (1979) <doi:10.1093/biomet/66.1.59> Hurd, H. L., Gerr, N. L. (1991) <doi:10.1111/j.1467-9892.1991.tb00088.x>.
For working with the Prevision.io AI model management platform's API <https://prevision.io/>.
Access the data of the Catalogue of the Timber Forest Species of the Peruvian Amazon Vásquez Martà nez, R., & Rojas Gonzáles, R.D.P.(2022)<doi:10.21704/rfp.v37i3.1956>.
This package provides a simple interface in the form of R6 classes for executing tasks in parallel, tracking their progress, and displaying accurate progress bars.
Routines for two different test types, the Constant Conditional Correlation (CCC) test and the Vectorial Independence (VI) test are provided (Kurz and Spanhel (2022) <doi:10.1214/22-EJS2051>). The tests can be applied to check whether a conditional copula coincides with its partial copula. Functions to test whether a regular vine copula satisfies the so-called simplifying assumption or to test a single copula within a regular vine copula to be a (j-1)-th order partial copula are available. The CCC test comes with a decision tree approach to allow testing in high-dimensional settings.
An R-package-version of an open online science-based personality test from <https://openpsychometrics.org/tests/IPIP-BFFM/>, providing a better-designed interface and a more detailed report. The core command launch_test() opens a personality test in your browser, and generates a report after you click "Submit". In this report, your results are compared with other people's, to show what these results mean. Other people's data is from <https://openpsychometrics.org/_rawdata/BIG5.zip>.
This package provides an implementation of piecewise normalisation techniques useful when dealing with the communication of skewed and highly skewed data. It also provides utilities that recommends a normalisation technique based on the distribution of the data.
This package provides a shiny app that allows to access and use the INVEKOS API for field polygons in Austria. API documentation is available at <https://gis.lfrz.gv.at/api/geodata/i009501/ogc/features/v1/>.
This package provides randomization using permutation for applications. To provide a Quality Control (QC) check, QC samples can be randomized within strata. A second function allows for the ability to â switchâ samples to meet set requirements and perform a certain amount of minimization on these switches. The functions are flexible for users by specifying strata size and number of QC samples per strata. The randomization meets the following requirements â ¢ QC sample requirements: QC samples not adjacent, QC samples from same mother must follow certain patterns. â ¢ Matched sample sets must be within a single strata, and next to each other.
This package provides data sets and functions for exploration of Pakistan Population Census 2017 (<http://www.pbscensus.gov.pk/>).
This package implements the methodology of Huling, Smith, and Chen (2020) <doi:10.1080/01621459.2020.1801449>, which allows for subgroup identification for semi-continuous outcomes by estimating individualized treatment rules. It uses a two-part modeling framework to handle semi-continuous data by separately modeling the positive part of the outcome and an indicator of whether each outcome is positive, but still results in a single treatment rule. High dimensional data is handled with a cooperative lasso penalty, which encourages the coefficients in the two models to have the same sign.