Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical Methods for Inferring Transmissions of Infectious Diseases from deep sequencing data (SMITID). It allow sequence-space-time host and viral population data storage, indexation and querying.
To automated functional annotation of genetic variants and linked proxies. Linked SNPs in moderate to high linkage disequilibrium (e.g. r2>0.50) with the corresponding index SNPs will be selected for further analysis.
Two-step and maximum likelihood estimation of Heckman-type sample selection models: standard sample selection models (Tobit-2), endogenous switching regression models (Tobit-5), sample selection models with binary dependent outcome variable, interval regression with sample selection (only ML estimation), and endogenous treatment effects models. These methods are described in the three vignettes that are included in this package and in econometric textbooks such as Greene (2011, Econometric Analysis, 7th edition, Pearson).
This package provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages moveHMM and marcher'. The segmentation method is a bivariate extension of Lavielle's method available in adehabitatLT (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in cghseg package) to the bivariate case. The method is fully described in Patin et al (2018) <doi:10.1101/444794>.
This package provides tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as OSRM (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the od package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the travel flow aggregration method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the OD jittering method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.
This package provides a spatio-dynamic modelling package that focuses on three characteristic wetland plant communities in a semiarid Mediterranean wetland in response to hydrological pressures from the catchment. The package includes the data on watershed hydrological pressure and the initial raster maps of plant communities but also allows for random initial distribution of plant communities. For more detailed info see: Martinez-Lopez et al. (2015) <doi:10.1016/j.ecolmodel.2014.11.024>.
Seed vigor is defined as the sum total of those properties of the seed which determine the level of activity and performance of the seed or seed lot during germination and seedling emergence. Testing for vigor becomes more important for carryover seeds, especially if seeds were stored under unknown conditions or under unfavorable storage conditions. Seed vigor testing is also used as indicator of the storage potential of a seed lot and in ranking various seed lots with different qualities. The vigour index is calculated using the equation given by (Ling et al. 2014) <doi:10.1038/srep05859>.
Implementation of the shuffle estimator, a non-parametric estimator for signal and noise variance under mild noise correlations.
This package provides tools to convert from specific formats to more general forms of spatial data. Using tables to store the actual entities present in spatial data provides flexibility, and the functions here deliberately minimize the level of interpretation applied, leaving that for specific applications. Includes support for simple features, round-trip for Spatial classes and long-form tables, analogous to ggplot2::fortify'. There is also a more normal form representation that decomposes simple features and their kin to tables of objects, parts, and unique coordinates.
Performing Item Response Theory analysis such as parameter estimation, ability estimation, item and model fit analyse, local independence assumption, dimensionality assumption, characteristic and information curves under various models with a user friendly shiny interface.
Evaluating the consistency assumption of Network Meta-Analysis both globally and locally in the Bayesian framework. Inconsistencies are located by applying Bayesian variable selection to the inconsistency factors. The implementation of the method is described by Seitidis et al. (2023) <doi:10.1002/sim.9891>.
Manage a collection/library of R source packages. Discover, document, load, test source packages. Enable to use those packages as if they were actually installed. Quickly reload only what is needed on source code change. Run tests and checks in parallel.
Download data (tables and datasets) from the Swiss National Bank (SNB; <https://www.snb.ch/en>), the Swiss central bank. The package is lightweight and comes with few dependencies; suggested packages are used only if data is to be transformed into particular data structures, for instance into zoo objects. Downloaded data can optionally be cached, to avoid repeated downloads of the same files.
It computes the solutions to a generic stochastic growth model for a given set of user supplied parameters. It includes the solutions to the model, plots of the solution, a summary of the features of the model, a function that covers different types of consumption preferences, and a function that computes the moments of a Markov process. Merton, Robert C (1971) <doi:10.1016/0022-0531(71)90038-X>, Tauchen, George (1986) <doi:10.1016/0165-1765(86)90168-0>, Wickham, Hadley (2009, ISBN:978-0-387-98140-6 ).
Practitioners of Bayesian statistics often use Markov chain Monte Carlo (MCMC) samplers to sample from a posterior distribution. This package determines whether the MCMC sample is large enough to yield reliable estimates of the target distribution. In particular, this calculates a Gelman-Rubin convergence diagnostic using stable and consistent estimators of Monte Carlo variance. Additionally, this uses the connection between an MCMC sample's effective sample size and the Gelman-Rubin diagnostic to produce a threshold for terminating MCMC simulation. Finally, this informs the user whether enough samples have been collected and (if necessary) estimates the number of samples needed for a desired level of accuracy. The theory underlying these methods can be found in "Revisiting the Gelman-Rubin Diagnostic" by Vats and Knudson (2018) <arXiv:1812:09384>.
Collection of functions to connect the structure of the data with the information on the samples. Three types of associations are covered: 1. linear model of principal components. 2. hierarchical clustering analysis. 3. distribution of features-sample annotation associations. Additionally, the inter-relation between sample annotations can be analyzed. Simple methods are provided for the correction of batch effects and removal of principal components.
This package provides methods to integrate functions over m-dimensional simplices in n-dimensional Euclidean space. There are exact methods for polynomials and adaptive methods for integrating an arbitrary function.
Regularized version of partial least square approaches providing sparse, group, and sparse group versions of partial least square regression models (Liquet, B., Lafaye de Micheaux, P., Hejblum B., Thiebaut, R. (2016) <doi:10.1093/bioinformatics/btv535>). Version of PLS Discriminant analysis is also provided.
R interface to Apache Spark, a fast and general engine for big data processing, see <https://spark.apache.org/>. This package supports connecting to local and remote Apache Spark clusters, provides a dplyr compatible back-end, and provides an interface to Spark's built-in machine learning algorithms.
Implement the algorithm provided in scan for estimating the transmission route on railway network using passenger volume. It is a generalization of the scan statistic approach for railway network to identify the hot railway route for transmitting infectious diseases.
Identify sudden gains based on the three criteria outlined by Tang and DeRubeis (1999) <doi:10.1037/0022-006X.67.6.894> to a selection of repeated measures. Sudden losses, defined as the opposite of sudden gains can also be identified. Two different datasets can be created, one including all sudden gains/losses and one including one selected sudden gain/loss for each case. It can extract scores around sudden gains/losses. It can plot the average change around sudden gains/losses and trajectories of individual cases.
This package implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.
This package provides data frames that hold certain columns and attributes persistently for data processing in dplyr'.
This package provides a toolkit for simulation studies concerning time-to-event endpoints with non-proportional hazards. SimNPH encompasses functions for simulating time-to-event data in various scenarios, simulating different trial designs like fixed-followup, event-driven, and group sequential designs. The package provides functions to calculate the true values of common summary statistics for the implemented scenarios and offers common analysis methods for time-to-event data. Helper functions for running simulations with the SimDesign package and for aggregating and presenting the results are also included. Results of the conducted simulation study are available in the paper: "A Comparison of Statistical Methods for Time-To-Event Analyses in Randomized Controlled Trials Under Non-Proportional Hazards", Klinglmüller et al. (2025) <doi:10.1002/sim.70019>.