Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides standardized access to a range of re-scaling methods for numerical vectors and time-series features calculated within the theft ecosystem.
Interface to gather news from the News API', based on a multilevel query <https://newsapi.org/>. A personal API key is required.
This R package provides a calculation of between-cases AUC estimate, corresponding covariance, and variance estimate in the nested data problem. Also, the package has the function to simulate the nested data. The calculated between-cases AUC estimate is used to evaluate the reader's diagnostic performance in clinical tasks with nested data. For more details on the above methods, please refer to the paper by H Du, S Wen, Y Guo, F Jin, BD Gallas (2022) <doi:10.1177/09622802221111539>.
This package implements the procedure from G. J. Ross (2021) - "Nonparametric Detection of Multiple Location-Scale Change Points via Wild Binary Segmentation" <arxiv:2107.01742>. This uses a version of Wild Binary Segmentation to detect multiple location-scale (i.e. mean and/or variance) change points in a sequence of univariate observations, with a strict control on the probability of incorrectly detecting a change point in a sequence which does not contain any.
Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Automate the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment.
Estimation of structural equation models with nonlinear effects and underlying nonnormal distributions.
Facilitates nonresponse bias analysis (NRBA) for survey data. Such data may arise from a complex sampling design with features such as stratification, clustering, or unequal probabilities of selection. Multiple types of analyses may be conducted: comparisons of response rates across subgroups; comparisons of estimates before and after weighting adjustments; comparisons of sample-based estimates to external population totals; tests of systematic differences in covariate means between respondents and full samples; tests of independence between response status and covariates; and modeling of outcomes and response status as a function of covariates. Extensive documentation and references are provided for each type of analysis. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the methods implemented in this package.
Package for a Network assisted algorithm for Epigenetic studies using mean and variance Combined signals: NEpiC. NEpiC combines both signals in mean and variance differences in methylation level between case and control groups searching for differentially methylated sub-networks (modules) using the protein-protein interaction network.
In empirical studies, instrumental variable (IV) regression is the signature method to solve the endogeneity problem. If we enforce the exogeneity condition of the IV, it is likely that we end up with a large set of IVs without knowing which ones are good. Also, one could face the model uncertainty for structural equation, as large micro dataset is commonly available nowadays. This package uses adaptive group lasso and B-spline methods to select the nonparametric components of the IV function, with the linear function being a special case (naivereg). The package also incorporates two stage least squares estimator (2SLS), generalized method of moment (GMM), generalized empirical likelihood (GEL) methods post instrument selection, logistic-regression instrumental variables estimator (LIVE, for dummy endogenous variable problem), double-selection plus instrumental variable estimator (DS-IV) and double selection plus logistic regression instrumental variable estimator (DS-LIVE), where the double selection methods are useful for high-dimensional structural equation models. The naivereg is nonparametric version of ivregress in Stata with IV selection and high dimensional features. The package is based on the paper by Q. Fan and W. Zhong, "Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective" (2018), Journal of Business & Economic Statistics <doi:10.1080/07350015.2016.1180991> as well as a series of working papers led by the same authors.
This package provides a network Maze generator that creates different types of network mazes.
Palettes generated from NBA jersey colorways.
These routines create multiple imputations of missing at random categorical data, and create multiply imputed synthesis of categorical data, with or without structural zeros. Imputations and syntheses are based on Dirichlet process mixtures of multinomial distributions, which is a non-parametric Bayesian modeling approach that allows for flexible joint modeling, described in Manrique-Vallier and Reiter (2014) <doi:10.1080/10618600.2013.844700>.
Modelling the vegetation, carbon, nitrogen and water dynamics of undisturbed open bog ecosystems in a temperate to sub-boreal climate. The executable of the model can downloaded from <https://github.com/jeroenpullens/NUCOMBog>.
This package performs Bayesian wavelet analysis using individual non-local priors as described in Sanyal & Ferreira (2017) <DOI:10.1007/s13571-016-0129-3> and non-local prior mixtures as described in Sanyal (2025) <DOI:10.48550/arXiv.2501.18134>.
This package provides several novel exact hypothesis tests with minimal assumptions on the errors. The tests are exact, meaning that their p-values are correct for the given sample sizes (the p-values are not derived from asymptotic analysis). The test for stochastic inequality is for ordinal comparisons based on two independent samples and requires no assumptions on the errors. The other tests include tests for the mean and variance of a single sample and comparing means in independent samples. All these tests only require that the data has known bounds (such as percentages that lie in [0,100]. These bounds are part of the input.
Package takes frequencies of mutations as reported by high throughput sequencing data from cancer and fits a theoretical neutral model of tumour evolution. Package outputs summary statistics and contains code for plotting the data and model fits. See Williams et al 2016 <doi:10.1038/ng.3489> and Williams et al 2017 <doi:10.1101/096305> for further details of the method.
This package contains a sample of the 2005 Grade 8 Mathematics data from the National Assessment of Educational Progress (NAEP). This data set is called the NAEP Primer.
This package provides a Non-Metric Space Library ('NMSLIB <https://github.com/nmslib/nmslib>) wrapper, which according to the authors "is an efficient cross-platform similarity search library and a toolkit for evaluation of similarity search methods. The goal of the NMSLIB <https://github.com/nmslib/nmslib> Library is to create an effective and comprehensive toolkit for searching in generic non-metric spaces. Being comprehensive is important, because no single method is likely to be sufficient in all cases. Also note that exact solutions are hardly efficient in high dimensions and/or non-metric spaces. Hence, the main focus is on approximate methods". The wrapper also includes Approximate Kernel k-Nearest-Neighbor functions based on the NMSLIB <https://github.com/nmslib/nmslib> Python Library.
Nonparametric efficiency measurement and statistical inference via DEA type estimators (see Färe, Grosskopf, and Lovell (1994) <doi:10.1017/CBO9780511551710>, Kneip, Simar, and Wilson (2008) <doi:10.1017/S0266466608080651> and Badunenko and Mozharovskyi (2020) <doi:10.1080/01605682.2019.1599778>) as well as Stochastic Frontier estimators for both cross-sectional data and 1st, 2nd, and 4th generation models for panel data (see Kumbhakar and Lovell (2003) <doi:10.1017/CBO9781139174411>, Badunenko and Kumbhakar (2016) <doi:10.1016/j.ejor.2016.04.049>). The stochastic frontier estimators can handle both half-normal and truncated normal models with conditional mean and heteroskedasticity. The marginal effects of determinants can be obtained.
Multivariate Normal (i.e. Gaussian) Mixture Models (S3) Classes. Fitting models to data using MLE (maximum likelihood estimation) for multivariate normal mixtures via smart parametrization using the LDL (Cholesky) decomposition, see McLachlan and Peel (2000, ISBN:9780471006268), Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>.
Designed for association studies in nested association mapping (NAM) panels, experimental and random panels. The method is described by Xavier et al. (2015) <doi:10.1093/bioinformatics/btv448>. It includes tools for genome-wide associations of multiple populations, marker quality control, population genetics analysis, genome-wide prediction, solving mixed models and finding variance components through likelihood and Bayesian methods.
Sparse VAR estimation based on LASSO.
This package contains the functions for testing the spatial patterns (of segregation, spatial symmetry, association, disease clustering, species correspondence, and reflexivity) based on nearest neighbor relations, especially using contingency tables such as nearest neighbor contingency tables (Ceyhan (2010) <doi:10.1007/s10651-008-0104-x> and Ceyhan (2017) <doi:10.1016/j.jkss.2016.10.002> and references therein), nearest neighbor symmetry contingency tables (Ceyhan (2014) <doi:10.1155/2014/698296>), species correspondence contingency tables and reflexivity contingency tables (Ceyhan (2018) <doi:10.2436/20.8080.02.72> for two (or higher) dimensional data. The package also contains functions for generating patterns of segregation, association, uniformity in a multi-class setting (Ceyhan (2014) <doi:10.1007/s00477-013-0824-9>), and various non-random labeling patterns for disease clustering in two dimensional cases (Ceyhan (2014) <doi:10.1002/sim.6053>), and for visualization of all these patterns for the two dimensional data. The tests are usually (asymptotic) normal z-tests or chi-square tests.
This package provides functions for downloading, calibrating, and analyzing atmospheric isotope data bundled into the eddy covariance data products of the National Ecological Observatory Network (NEON) <https://www.neonscience.org>. Calibration tools are provided for carbon and water isotope products. Carbon isotope calibration details are found in Fiorella et al. (2021) <doi:10.1029/2020JG005862>, and the readme file at <https://github.com/lanl/NEONiso>. Tools for calibrating water isotope products have been added as of 0.6.0, but have known deficiencies and should be considered experimental and unsupported.