Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides several functions and datasets for area level of Small Area Estimation under Spatial Model using Hierarchical Bayesian (HB) Method. Model-based estimators include the HB estimators based on a Spatial Fay-Herriot model with univariate normal distribution for variable of interest.The rjags package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
An analytic framework for the calculation of norm- and criterion-referenced academic growth estimates using large scale, longitudinal education assessment data as developed in Betebenner (2009) <doi:10.1111/j.1745-3992.2009.00161.x>.
Analysis of field trial experiments by modelling spatial trends using two-dimensional Penalised spline (P-spline) models.
Detect libraries used in a project and automatically create software bibliographies in PDF', Word', Rmarkdown', and BibTeX formats.
Algorithms for the implementation and evaluation of Monte Carlo tests, as well as for their use in multiple testing procedures.
Fast enrichment analysis for locally correlated statistics via circular permutations. The analysis can be performed at multiple significance thresholds for both primary and auxiliary data sets with efficient correction for multiple testing.
Some M-estimators for 1-dimensional location (Bisquare, ML for the Cauchy distribution, and the estimators from application of the smoothing principle introduced in Hampel, Hennig and Ronchetti (2011) to the above, the Huber M-estimator, and the median, main function is smoothm), and Pitman estimator.
This package provides a framework for specifying spatially, temporally and spatially-and-temporally varying coefficient models using Generalized Additive Models with smooths. The smooths are parameterised with location, time and predictor variables. The framework supports the investigation of the presence and nature of any space-time dependencies in the data by evaluating multiple model forms (specifications) using a Generalized Cross-Validation score. The workflow sequence is to: i) Prepare the data by lengthening it to have a single location and time variables for each observation. ii) Evaluate all possible spatial and/or temporal models in which each predictor is specified in different ways. iii) Evaluate each model and pick the best one. iv) Create the final model. v) Calculate the varying coefficient estimates to quantify how the relationships between the target and predictor variables vary over space, time or space-time. vi) Create maps, time series plots etc. For more details see: Comber et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.22>, Comber et al (2024) <doi:10.1080/13658816.2023.2270285> and Comber et al (2004) <doi:10.3390/ijgi13120459>.
This package implements methods for variable selection in linear regression based on the "Sum of Single Effects" (SuSiE) model, as described in Wang et al (2020) <DOI:10.1101/501114> and Zou et al (2021) <DOI:10.1101/2021.11.03.467167>. These methods provide simple summaries, called "Credible Sets", for accurately quantifying uncertainty in which variables should be selected. The methods are motivated by genetic fine-mapping applications, and are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse. The fitting algorithm, a Bayesian analogue of stepwise selection methods called "Iterative Bayesian Stepwise Selection" (IBSS), is simple and fast, allowing the SuSiE model be fit to large data sets (thousands of samples and hundreds of thousands of variables).
This package provides tests for segregation distortion in F1 polyploid populations under different assumptions of meiosis. These tests can account for double reduction, partial preferential pairing, and genotype uncertainty through the use of genotype likelihoods. Parallelization support is provided. Details of these methods are described in Gerard et al. (2025a) <doi:10.1007/s00122-025-04816-z> and Gerard et al. (2025b) <doi:10.1101/2025.06.23.661114>. Part of this material is based upon work supported by the National Science Foundation under Grant No. 2132247. The opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation.
Given a bulk transcriptomic (RNA-seq) sample of an Myeloid Leukemia patient calculates immune composition and drug resistance for different small-molecule inhibitors. Published in <https://www.nature.com/articles/s41698-024-00596-9>.
Estimation of mean squared prediction error of a small area predictor is provided. In particular, the recent method of Simple, Unified, Monte-Carlo Assisted approach for the mean squared prediction error estimation of small area predictor is provided. We also provide other existing methods of mean squared prediction error estimation such as jackknife method for the mixed logistic model.
Computes the sit coefficient between two vectors x and y, possibly all paired coefficients for a matrix. The reference for the methods implemented here is Zhang, Yilin, Canyi Chen, and Liping Zhu. 2022. "Sliced Independence Test." Statistica Sinica. <doi:10.5705/ss.202021.0203>. This package incorporates the Galton peas example.
The goal of SAFEPG is to predict climate-related extreme losses by fitting a frequency-severity model. It improves predictive performance by introducing a sign-aligned regularization term, which ensures consistent signs for the coefficients across the frequency and severity components. This enhancement not only increases model accuracy but also enhances its interpretability, making it more suitable for practical applications in risk assessment.
Semiparametric empirical likelihood ratio based tests of change-point with one-change or epidemic alternatives with data-based model diagnostic are contained.
Graphs (or networks) and graph component calculations for spatial locations in 1D, 2D, 3D etc.
This package provides a base dependency solution with basic argument parsing for use with Rscript'.
This package provides historical datasets related to John Snow's 1854 cholera outbreak study in London. Includes data on cholera cases, water pump locations, and the street layout, enabling analysis and visualisation of the outbreak.
This package provides a very nice interface to Princeton's WordNet without rJava dependency. WordNet data is not included. Princeton University makes WordNet available to research and commercial users free of charge provided the terms of their license (<https://wordnet.princeton.edu/license-and-commercial-use>) are followed, and proper reference is made to the project using an appropriate citation (<https://wordnet.princeton.edu/citing-wordnet>).
This package contains methods for the simulation of positive tempered stable distributions and related subordinators. Including classical tempered stable, rapidly deceasing tempered stable, truncated stable, truncated tempered stable, generalized Dickman, truncated gamma, generalized gamma, and p-gamma. For details, see Dassios et al (2019) <doi:10.1017/jpr.2019.6>, Dassios et al (2020) <doi:10.1145/3368088>, Grabchak (2021) <doi:10.1016/j.spl.2020.109015>.
The Swash-Backwash Model for the Single Epidemic Wave was developed by Cliff and Haggett (2006) <doi:10.1007/s10109-006-0027-8> to model the velocity of spread of infectious diseases across space. This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The package also provides additional functions for bootstrap confidence intervals, country comparison, visualization of results, and data management.
This package provides a tool to calculate sky illuminance values (in lux) for both sun and moon. The model is a translation of the Fortran code by Janiczek and DeYoung (1987) <https://archive.org/details/DTIC_ADA182110>.
Estimate Bayesian nested mixture models via Markov Chain Monte Carlo methods. Specifically, the package implements the common atoms model (Denti et al., 2023), and hybrid finite-infinite models. All models use Gaussian mixtures with a normal-inverse-gamma prior distribution on the parameters. Additional functions are provided to help analyzing the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, Dâ Angelo, Denti (2024) <doi:10.1214/24-BA1458>.
Calculates parameters of the seawater carbonate system and assists the design of ocean acidification perturbation experiments.