Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Performing goodness-of-fit tests for stochastic block models used to fit network data. Among the three variants discussed in Karwa et al. (2023) <doi:10.1093/jrsssb/qkad084>, goodness-of-fit test has been performed for the Erdos-Renyi (ER) and Beta versions.
Estimates hazard ratios and mortality differentials for doubly-truncated data without population denominators. This method is described in Goldstein et al. (2023) <doi:10.1007/s11113-023-09785-z>.
Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.
Variable selection deviation (VSD) measures and instability tests for high-dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable.
Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities.
Fits generalized additive models for the location, scale and shape parameters of a generalized extreme value response distribution. The methodology is based on Rigby, R.A. and Stasinopoulos, D.M. (2005), <doi:10.1111/j.1467-9876.2005.00510.x> and implemented using functions from the gamlss package <doi:10.32614/CRAN.package.gamlss>.
Analysis of complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, as described by Underwood (1997). There are two restrictions: (i) data must be balanced; (ii) fixed nested factors are not allowed. Homogeneity of variances is checked using Cochran's C test and a posteriori comparisons of means are done using Student-Newman-Keuls (SNK) procedure. For those terms with no denominator in the F-ratio calculation, pooled mean squares and quasi F-ratios are provided. Magnitute of effects are assessed by components of variation.
Extends classical linear and quadratic discriminant analysis by incorporating permutation group symmetries into covariance matrix estimation. The package leverages methodology from the gips framework to identify and impose permutation structures that act as a form of regularization, improving stability and interpretability in settings with symmetric or exchangeable features. Several discriminant analysis variants are provided, including pooled and class-specific covariance models, as well as multi-class extensions with shared or independent symmetry structures. For more details about gips methodology see and Graczyk et al. (2022) <doi:10.1214/22-AOS2174> and Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).
Add glossaries to markdown and quarto documents by tagging individual words. Definitions can be provided inline or in a separate file.
This package provides functions for downloading of geographic data for use in spatial analysis and mapping. The package facilitates access to climate, crops, elevation, land use, soil, species occurrence, accessibility, administrative boundaries and other data.
This package provides functions for obtaining generalized normal/exponential power distribution probabilities, quantiles, densities and random deviates. The generalized normal/exponential power distribution was introduced by Subbotin (1923) and rediscovered by Nadarajah (2005). The parametrization given by Nadarajah (2005) <doi:10.1080/02664760500079464> is used.
Fits a generalized linear density ratio model (GLDRM). A GLDRM is a semiparametric generalized linear model. In contrast to a GLM, which assumes a particular exponential family distribution, the GLDRM uses a semiparametric likelihood to estimate the reference distribution. The reference distribution may be any discrete, continuous, or mixed exponential family distribution. The model parameters, which include both the regression coefficients and the cdf of the unspecified reference distribution, are estimated by maximizing a semiparametric likelihood. Regression coefficients are estimated with no loss of efficiency, i.e. the asymptotic variance is the same as if the true exponential family distribution were known. Huang (2014) <doi:10.1080/01621459.2013.824892>. Huang and Rathouz (2012) <doi:10.1093/biomet/asr075>. Rathouz and Gao (2008) <doi:10.1093/biostatistics/kxn030>.
Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko. Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms that performs gradually complicated polynomial models and selecting the best solution by an external criterion. In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and selecting an optimal structure of model or network. The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.
This package provides a quick and easy way of plotting the columns of two matrices or data frames against each other using ggplot2'. Although ggmatplot doesn't provide the same flexibility as ggplot2', it can be used as a workaround for having to wrangle wide format data into long format for plotting with ggplot2'.
This package provides functions for constructing Transformed and Relative Lorenz curves with survey sampling weights. Given a variable of interest measured in two groups with scaled survey weights so that their hypothetical populations are of equal size, tlorenz() computes the proportion of members of the group with smaller values (ordered from smallest to largest) needed for their sum to match the sum of the top qth percentile of the group with higher values. rlorenz() shows the fraction of the total value of the group with larger values held by the pth percentile of those in the group with smaller values. Fd() is a survey weighted cumulative distribution function and Eps() is a survey weighted inverse cdf used in rlorenz(). Ramos, Graubard, and Gastwirth (2025) <doi:10.1093/jrsssa/qnaf044>.
Wrapper around geom_histogram() of ggplot2 to plot the histogram of a numeric vector. This is especially useful, since qplot() was deprecated in ggplot2 3.4.0.
Fit the penalized Cox models with both non-overlapping and overlapping grouped penalties including the group lasso, group smoothly clipped absolute deviation, and group minimax concave penalty. The algorithms combine the MM approach and group-wise descent with some computational tricks including the screening, active set, and warm-start. Different tuning regularization parameter methods are provided.
Demos for smoothing and gamlss.family distributions.
This package provides tools to measure the reliability of an Information Retrieval test collection. It allows users to estimate reliability using Generalizability Theory and map those estimates onto well-known indicators such as Kendall tau correlation or sensitivity.
Facilitates efficient visualization of Relative Synonymous Codon Usage patterns across species. Based on analytical outputs from codonW', MEGA', and Phylosuite', it supports multi-species RSCU comparisons and allows users to explore visual analysis of structurally similar datasets.
Multi-threaded GIF encoder written in Rust: <https://gif.ski/>. Converts images to GIF animations using pngquant's efficient cross-frame palettes and temporal dithering with thousands of colors per frame.
GPU'/CPU Benchmarking on Debian-package based systems This package benchmarks performance of a few standard linear algebra operations (such as a matrix product and QR, SVD and LU decompositions) across a number of different BLAS libraries as well as a GPU implementation. To do so, it takes advantage of the ability to plug and play different BLAS implementations easily on a Debian and/or Ubuntu system. The current version supports - Reference BLAS ('refblas') which are un-accelerated as a baseline - Atlas which are tuned but typically configure single-threaded - Atlas39 which are tuned and configured for multi-threaded mode - Goto Blas which are accelerated and multi-threaded - Intel MKL which is a commercial accelerated and multithreaded version. As for GPU computing, we use the CRAN package - gputools For Goto Blas', the gotoblas2-helper script from the ISM in Tokyo can be used. For Intel MKL we use the Revolution R packages from Ubuntu 9.10.
Defines window or bin boundaries for the analysis of genomic data. Boundaries are based on the inflection points of a cubic smoothing spline fitted to the raw data. Along with defining boundaries, a technique to evaluate results obtained from unequally-sized windows is provided. Applications are particularly pertinent for, though not limited to, genome scans for selection based on variability between populations (e.g. using Wright's fixations index, Fst, which measures variability in subpopulations relative to the total population).
This package provides tools to build and work with bilateral generalized-mean price indexes (and by extension quantity indexes), and indexes composed of generalized-mean indexes (e.g., superlative quadratic-mean indexes, GEKS). Covers the core mathematical machinery for making bilateral price indexes, computing price relatives, detecting outliers, and decomposing indexes, with wrappers for all common (and many uncommon) index-number formulas. Implements and extends many of the methods in Balk (2008, <doi:10.1017/CBO9780511720758>), von der Lippe (2007, <doi:10.3726/978-3-653-01120-3>), and the CPI manual (2020, <doi:10.5089/9781484354841.069>).