Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate change point based on spectral clustering with the option to automatically calculate the number of clusters if this information is not available.
The Sparse Marginal Epistasis Test is a computationally efficient genetics method which detects statistical epistasis in complex traits; see Stamp et al. (2025, <doi:10.1101/2025.01.11.632557>) for details.
This package contains methods for the simulation of positive tempered stable distributions and related subordinators. Including classical tempered stable, rapidly deceasing tempered stable, truncated stable, truncated tempered stable, generalized Dickman, truncated gamma, generalized gamma, and p-gamma. For details, see Dassios et al (2019) <doi:10.1017/jpr.2019.6>, Dassios et al (2020) <doi:10.1145/3368088>, Grabchak (2021) <doi:10.1016/j.spl.2020.109015>.
Predicts the presence of signal peptides in eukaryotic protein using hidden semi-Markov models. The implemented algorithm can be accessed from both the command line and GUI.
Preview spatial data as leaflet maps with minimal effort. smartmap is optimized for interactive use and distinguishes itself from similar packages because it does not need real spatial ('sp or sf') objects an input; instead, it tries to automatically coerce everything that looks like spatial data to sf objects or leaflet maps. It - for example - supports direct mapping of: a vector containing a single coordinate pair, a two column matrix, a data.frame with longitude and latitude columns, or the path or URL to a (possibly compressed) shapefile'.
The aim of the package is to provide some basic functions for doing statistics with one dimensional Fuzzy Data (in the form of polygonal fuzzy numbers). In particular, the package contains functions for the basic operations on the class of fuzzy numbers (sum, scalar product, mean, median, Hukuhara difference) as well as for calculating (Bertoluzza) distance and sample variance. Moreover a function to simulate fuzzy random variables and bootstrap tests for the equality of means is included. Version 2.1 fixes some bugs of previous versions.
This is a modification of HDoutliers package. The HDoutliers algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arXiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of HDoutliers algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.
Proxy forward modelling for sediment archived climate proxies such as Mg/Ca, d18O or Alkenones. The user provides a hypothesised "true" past climate, such as output from a climate model, and details of the sedimentation rate and sampling scheme of a sediment core. Sedproxy returns simulated proxy records. Implements the methods described in Dolman and Laepple (2018) <doi:10.5194/cp-14-1851-2018>.
Plots a QQ-Norm Plot with several Gaussian simulations.
Toolbox for different kinds of spatio-temporal analyses to be performed on observed point patterns, following the growing stream of literature on point process theory. This R package implements functions to perform different kinds of analyses on point processes, proposed in the papers (Siino, Adelfio, and Mateu 2018<doi:10.1007/s00477-018-1579-0>; Siino et al. 2018<doi:10.1002/env.2463>; Adelfio et al. 2020<doi:10.1007/s00477-019-01748-1>; Dâ Angelo, Adelfio, and Mateu 2021<doi:10.1016/j.spasta.2021.100534>; Dâ Angelo, Adelfio, and Mateu 2022<doi:10.1007/s00362-022-01338-4>; Dâ Angelo, Adelfio, and Mateu 2023<doi:10.1016/j.csda.2022.107679>). The main topics include modeling, statistical inference, and simulation issues on spatio-temporal point processes on Euclidean space and linear networks. Version 1.0.0 has been updated for accompanying the journal publication D Angelo and Adelfio 2025 <doi:10.18637/jss.v113.i10>.
This package provides functions to read and write ESRI shapefiles.
This comprehensive toolkit for skewed regression is designated as "SLIC" (The LIC for Distributed Skewed Regression Analysis). It is predicated on the assumption that the error term follows a skewed distribution, such as the Skew-Normal, Skew-t, or Skew-Laplace. The methodology and theoretical foundation of the package are described in Guo G.(2020) <doi:10.1080/02664763.2022.2053949>.
This package performs hybrid multi-stage factor analytic procedure for controlling acquiescence in restricted solutions (Ferrando & Lorenzo-Seva, 2000 <https://www.uv.es/revispsi/articulos3.00/ferran7.pdf>).
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See <http://snap.stanford.edu/seismic/> for more information and datasets.
Selection of spatially balanced samples. In particular, the implemented sampling designs allow to select probability samples well spread over the population of interest, in any dimension and using any distance function (e.g. Euclidean distance, Manhattan distance). For more details, Pantalone F, Benedetti R, and Piersimoni F (2022) <doi:10.18637/jss.v103.c02>, Benedetti R and Piersimoni F (2017) <doi:10.1002/bimj.201600194>, and Benedetti R and Piersimoni F (2017) <arXiv:1710.09116>. The implementation has been done in C++ through the use of Rcpp and RcppArmadillo'.
Perform common dendrometry operations such as inventory preparing, and inventory data analysis.
Unsupervised text tokenizer allowing to perform byte pair encoding and unigram modelling. Wraps the sentencepiece library <https://github.com/google/sentencepiece> which provides a language independent tokenizer to split text in words and smaller subword units. The techniques are explained in the paper "SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing" by Taku Kudo and John Richardson (2018) <doi:10.18653/v1/D18-2012>. Provides as well straightforward access to pretrained byte pair encoding models and subword embeddings trained on Wikipedia using word2vec', as described in "BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages" by Benjamin Heinzerling and Michael Strube (2018) <http://www.lrec-conf.org/proceedings/lrec2018/pdf/1049.pdf>.
This package provides a unique dataset of historical forest cover across all states in the United States, spanning from 1907 to 2017, along with 1630 as a reference year. This dataset is important for understanding environmental changes and land use trends over time. It includes functionality for easy access of the data.
The user has the option to utilize the two-dimensional density estimation techniques called smoothed density published by Eilers and Goeman (2004) <doi:10.1093/bioinformatics/btg454>, and pareto density which was evaluated for univariate data by Thrun, Gehlert and Ultsch, 2020 <doi:10.1371/journal.pone.0238835>. Moreover, it provides visualizations of the density estimation in the form of two-dimensional scatter plots in which the points are color-coded based on increasing density. Colors are defined by the one-dimensional clustering technique called 1D distribution cluster algorithm (DDCAL) published by Lux and Rinderle-Ma (2023) <doi:10.1007/s00357-022-09428-6>.
These are my collection of R Markdown templates, mostly for compilation to PDF. These are useful for all things academic and professional, if you are using R Markdown for things like your CV or your articles and manuscripts.
Assesses the number of concurrent users shiny applications are capable of supporting, and for directing application changes in order to support a higher number of users. Provides facilities for recording shiny application sessions, playing recorded sessions against a target server at load, and analyzing the resulting metrics.
This package provides a collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015 <doi: 10.1007/s10109-015-0213-7>). The implemented models include linear regression with residual spatial dependence, spatially/spatio-temporally varying coefficient models (Murakami et al., 2017, 2024; <doi:10.1016/j.spasta.2016.12.001>,<doi:10.48550/arXiv.2410.07229>), spatially filtered unconditional quantile regression (Murakami and Seya, 2019 <doi:10.1002/env.2556>), Gaussian and non-Gaussian spatial mixed models through compositionally-warping (Murakami et al. 2021, <doi:10.1016/j.spasta.2021.100520>).
Flexibly simulates a dataset with time-varying covariates with user-specified exchangeable correlation structures across and within clusters. Covariates can be normal or binary and can be static within a cluster or time-varying. Time-varying normal variables can optionally have linear trajectories within each cluster. See ?make_one_dataset for the main wrapper function. See Montez-Rath et al. <arXiv:1709.10074> for methodological details.
Implementation of Small Area Estimation (SAE) using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error under Beta Distribution. The rjags package is employed to obtain parameter estimates. For the references, see J.N.K & Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Sharon (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).