Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for the exploration of distributions of phylogenetic trees. This package includes a shiny interface which can be started from R using treespaceServer(). For further details see Jombart et al. (2017) <DOI:10.1111/1755-0998.12676>.
This package implements methods and functions to calibrate time-specific niche models (multi-temporal calibration), letting users execute a strict calibration and selection process of niche models based on ellipsoids, as well as functions to project the potential distribution in the present and in global change scenarios.The tenm package has functions to recover information that may be lost or overlooked while applying a data curation protocol. This curation involves preserving occurrences that may appear spatially redundant (occurring in the same pixel) but originate from different time periods. A novel aspect of this package is that it might reconstruct the fundamental niche more accurately than mono-calibrated approaches. The theoretical background of the package can be found in Peterson et al. (2011)<doi:10.5860/CHOICE.49-6266>.
Helper functions for processing REDCap data in R. REDCap is a web-enabled application for building and managing surveys and databases developed at Vanderbilt University.
Agglomerative hierarchical clustering with a bespoke distance measure based on medication similarities in the Anatomical Therapeutic Chemical Classification System, medication timing and medication amount or dosage. Tools for summarizing, illustrating and manipulating the cluster objects are also available.
The typicality and eccentricity data analysis (TEDA) framework was put forward by Angelov (2013) <DOI:10.14313/JAMRIS_2-2014/16>. It has been further developed into multiple different techniques since, and provides a non-parametric way of determining how similar an observation, from a process that is not purely random, is to other observations generated by the process. This package provides code to use the batch and recursive TEDA methods that have been published.
Makes data wrangling with ID-related aspects more comfortable. Provides functions that make it easy to inspect various subject-generated ID codes (SGIC) for plausibility. Also helps with inspecting other common identifiers, ensuring that your data stays clean and reliable.
This package provides a tidy interface to data.table', giving users the speed of data.table while using tidyverse-like syntax.
Infer constant and stochastic, time-dependent parameters to consider intrinsic stochasticity of a dynamic model and/or to analyze model structure modifications that could reduce model deficits. The concept is based on inferring time-dependent parameters as stochastic processes in the form of Ornstein-Uhlenbeck processes jointly with inferring constant model parameters and parameters of the Ornstein-Uhlenbeck processes. The package also contains functions to sample from and calculate densities of Ornstein-Uhlenbeck processes. References: Tomassini, L., Reichert, P., Kuensch, H.-R. Buser, C., Knutti, R. and Borsuk, M.E. (2009), A smoothing algorithm for estimating stochastic, continuous-time model parameters and its application to a simple climate model, Journal of the Royal Statistical Society: Series C (Applied Statistics) 58, 679-704, <doi:10.1111/j.1467-9876.2009.00678.x> Reichert, P., and Mieleitner, J. (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters. Water Resources Research, 45, W10402, <doi:10.1029/2009WR007814> Reichert, P., Ammann, L. and Fenicia, F. (2021), Potential and challenges of investigating intrinsic uncertainty of hydrological models with time-dependent, stochastic parameters. Water Resources Research 57(8), e2020WR028311, <doi:10.1029/2020WR028311> Reichert, P. (2022), timedeppar: An R package for inferring stochastic, time-dependent model parameters, in preparation.
The goal of tor (to-R) is to help you to import multiple files from a single directory at once, and to do so as quickly, flexibly, and simply as possible.
This package provides a music notation syntax and a collection of music programming functions for generating, manipulating, organizing, and analyzing musical information in R. Music syntax can be entered directly in character strings, for example to quickly transcribe short pieces of music. The package contains functions for directly performing various mathematical, logical and organizational operations and musical transformations on special object classes that facilitate working with music data and notation. The same music data can be organized in tidy data frames for a familiar and powerful approach to the analysis of large amounts of structured music data. Functions are available for mapping seamlessly between these formats and their representations of musical information. The package also provides an API to LilyPond (<https://lilypond.org/>) for transcribing musical representations in R into tablature ("tabs") and sheet music. LilyPond is open source music engraving software for generating high quality sheet music based on markup syntax. The package generates LilyPond files from R code and can pass them to the LilyPond command line interface to be rendered into sheet music PDF files or inserted into R markdown documents. The package offers nominal MIDI file output support in conjunction with rendering sheet music. The package can read MIDI files and attempts to structure the MIDI data to integrate as best as possible with the data structures and functionality found throughout the package.
Plant ecologists often need to collect "traits" data about plant species which are often scattered among various databases: TR8 contains a set of tools which take care of automatically retrieving some of those functional traits data for plant species from publicly available databases (The Ecological Flora of the British Isles, LEDA traitbase, Ellenberg values for Italian Flora, Mycorrhizal intensity databases, BROT, PLANTS, Jepson Flora Project). The TR8 name, inspired by "car plates" jokes, was chosen since it both reminds of the main object of the package and is extremely short to type.
This package provides a flexible simulation tool for phylogenetic trees under a general model for speciation and extinction. Trees with a user-specified number of extant tips, or a user-specified stem age are simulated. It is possible to assume any probability distribution for the waiting time until speciation and extinction. Furthermore, the waiting times to speciation / extinction may be scaled in different parts of the tree, meaning we can simulate trees with clade-dependent diversification processes. At a speciation event, one species splits into two. We allow for two different modes at these splits: (i) symmetric, where for every speciation event new waiting times until speciation and extinction are drawn for both daughter lineages; and (ii) asymmetric, where a speciation event results in one species with new waiting times, and another that carries the extinction time and age of its ancestor. The symmetric mode can be seen as an vicariant or allopatric process where divided populations suffer equal evolutionary forces while the asymmetric mode could be seen as a peripatric speciation where a mother lineage continues to exist. Reference: O. Hagen and T. Stadler (2017). TreeSimGM: Simulating phylogenetic trees under general Bellman Harris models with lineage-specific shifts of speciation and extinction in R. Methods in Ecology and Evolution. <doi:10.1111/2041-210X.12917>.
This package provides functions to find all matches or non-matches, orphans, and duplicate or other replicated elements.
This package provides a collection of commonly used tools for animal movement and other tracking data. Variously distance, angle, bearing, distance-to, bearing-to and speed are provided for geographic data that can be used directly or within tidyverse syntax. Distances and bearings are calculated using modern geodesic methods as provided by Charles F. F. Karney (2013) <doi:10.1007/s00190-012-0578-z> via the geodist and geosphere packages.
Built on top of the tibble package, tibbletime is an extension that allows for the creation of time aware tibbles. Some immediate advantages of this include: the ability to perform time-based subsetting on tibbles, quickly summarising and aggregating results by time periods, and creating columns that can be used as dplyr time-based groups.
Instance feature calculation and evolutionary instance generation for the traveling salesman problem. Also contains code to "morph" two TSP instances into each other. And the possibility to conveniently run a couple of solvers on TSP instances.
R implementation of the software tools developed in the H-CUP (Healthcare Cost and Utilization Project) <https://www.hcup-us.ahrq.gov> and AHRQ (Agency for Healthcare Research and Quality) <https://www.ahrq.gov>. It currently contains functions for mapping ICD-9 codes to the AHRQ comorbidity measures and translating ICD-9 (resp. ICD-10) codes to ICD-10 (resp. ICD-9) codes based on GEM (General Equivalence Mappings) from CMS (Centers for Medicare and Medicaid Services).
Computation of stopping boundaries for a single-arm trial using a Bayesian criterion; i.e., for each m<=n (n= total patient number of the trial) the smallest number of observed toxicities is calculated leading to the termination of the trial/accrual according to the specified criteria. The probabilities of stopping the trial/accrual at and up until (resp.) the m-th patient (m<=n) is also calculated. This design is more conservative than the frequentist approach (using Clopper Pearson CIs) which might be preferred as it concerns safety.See also Aamot et.al.(2010) "Continuous monitoring of toxicity in clinical trials - simulating the risk of stopping prematurely" <doi:10.5414/cpp48476>.
Delta Method implementation to estimate standard errors with known asymptotic properties within the tidyverse workflow. The Delta Method is a statistical tool that approximates an estimatorĂ¢ s behaviour using a Taylor Expansion. For a comprehensive explanation, please refer to Chapter 3 of van der Vaart (1998, ISBN: 9780511802256).
Estimates heterogeneous treatment effects using tidy semantics on experimental or observational data. Methods are based on the doubly-robust learner of Kennedy (2023) <doi:10.1214/23-EJS2157>. You provide a simple recipe for what machine learning algorithms to use in estimating the nuisance functions and tidyhte will take care of cross-validation, estimation, model selection, diagnostics and construction of relevant quantities of interest about the variability of treatment effects.
This package provides customizable 3D tree models (as OBJ files) for use in data visualization. Includes both planar and solid tree models, various crown types (columnar, oval, palm, pyramidal, rounded, spreading, vase, weeping), and options to change the diameter, height, and color of the tree's crown and trunk.
Computes the solution path of the Terminating-LARS (T-LARS) algorithm. The T-LARS algorithm is a major building block of the T-Rex selector (see R package TRexSelector'). The package is based on the papers Machkour, Muma, and Palomar (2022) <arXiv:2110.06048>, Efron, Hastie, Johnstone, and Tibshirani (2004) <doi:10.1214/009053604000000067>, and Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>.
Estimation of models for truncated Gaussian variables by maximum likelihood.
Multiple ways to bin numeric columns with a tidy output. Wraps a variety of existing binning methods into one function, and includes a new method for binning by equal value, which is useful for sales data. Provides a function to automatically summarize the properties of the binned columns.