Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990)<doi:10.1016/0168-1591(90)90125-W>. It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins. In addition, it is possible plotting the results using a bar plot, box plot, and sociogram.
This package provides tools for creating and working with survey replicate weights, extending functionality of the survey package from Lumley (2004) <doi:10.18637/jss.v009.i08>. Implements bootstrap methods for complex surveys, including the generalized survey bootstrap as described by Beaumont and Patak (2012) <doi:10.1111/j.1751-5823.2011.00166.x>. Methods are provided for applying nonresponse adjustments to both full-sample and replicate weights as described by Rust and Rao (1996) <doi:10.1177/096228029600500305>. Implements methods for sample-based calibration described by Opsomer and Erciulescu (2021) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2021002/article/00006-eng.htm>. Diagnostic functions are included to compare weights and weighted estimates from different sets of replicate weights.
This package provides a robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
This package produces various measures of expected treatment effect heterogeneity under an assumption of homogeneity across subgroups. Graphical presentations are created to compare these expected differences with the observed differences.
This package performs receptor abundance estimation for single cell RNA-sequencing data using a supervised feature selection mechanism and a thresholded gene set scoring procedure. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for reduced rank reconstruction and rank-k selection is detailed in: Javaid et al., (2022) <doi:10.1101/2022.10.08.511197>. Gene set scoring procedure is described in: Frost et al., (2020) <doi:10.1093/nar/gkaa582>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.
Builds regression trees and random forests for longitudinal or functional data using a spline projection method. Implements and extends the work of Yu and Lambert (1999) <doi:10.1080/10618600.1999.10474847>. This method allows trees and forests to be built while considering either level and shape or only shape of response trajectories.
Fast and efficient sampling from general univariate probability density functions. Implements a rejection sampling approach designed to take advantage of modern CPU caches and minimise evaluation of the target density for most samples. Many standard densities are internally implemented in C for high performance, with general user defined densities also supported. A paper describing the methodology will be released soon.
This package provides a workflow based on scTenifoldNet to perform in-silico knockout experiments using single-cell RNA sequencing (scRNA-seq) data from wild-type (WT) control samples as input. First, the package constructs a single-cell gene regulatory network (scGRN) and knocks out a target gene from the adjacency matrix of the WT scGRN by setting the geneâ s outdegree edges to zero. Then, it compares the knocked out scGRN with the WT scGRN to identify differentially regulated genes, called virtual-knockout perturbed genes, which are used to assess the impact of the gene knockout and reveal the geneâ s function in the analyzed cells.
The notion of power index has been widely used in literature to evaluate the influence of individual players (e.g., voters, political parties, nations, stockholders, etc.) involved in a collective decision situation like an electoral system, a parliament, a council, a management board, etc., where players may form coalitions. Traditionally this ranking is determined through numerical evaluation. More often than not however only ordinal data between coalitions is known. The package socialranking offers a set of solutions to rank players based on a transitive ranking between coalitions, including through CP-Majority, ordinal Banzhaf or lexicographic excellence solution summarized by Tahar Allouche, Bruno Escoffier, Stefano Moretti and Meltem à ztürk (2020, <doi:10.24963/ijcai.2020/3>).
Computes the extended spring indices (SI-x) and false spring exposure indices (FSEI). The SI-x indices are standard indices used for analysis in spring phenology studies. In addition, the FSEI is also from research on the climatology of false springs and adjusted to include an early and late false spring exposure index. The indices include the first leaf index, first bloom index, and false spring exposure indices, along with all calculations for all functions needed to calculate each index. The main function returns all indices, but each function can also be run separately. Allstadt et al. (2015) <doi: 10.1088/1748-9326/10/10/104008> Ault et al. (2015) <doi: 10.1016/j.cageo.2015.06.015> Peterson and Abatzoglou (2014) <doi: 10.1002/2014GL059266> Schwarz et al. (2006) <doi: 10.1111/j.1365-2486.2005.01097.x> Schwarz et al. (2013) <doi: 10.1002/joc.3625>.
This package creates an S4 class "SSM" and defines functions for fitting smooth supersaturated models, a polynomial model with spline-like behaviour. Functions are defined for the computation of Sobol indices for sensitivity analysis and plotting the main effects using FANOVA methods. It also implements the estimation of the SSM metamodel error using a GP model with a variety of defined correlation functions.
Creating a great user interface for your Shiny apps can be a hassle, especially if you want to work purely in R and don't want to use, for instance HTML templates. This package adds support for a powerful UI library Fomantic UI - <https://fomantic-ui.com/> (before Semantic). It also supports universal UI input binding that works with various DOM elements.
Documentation and prototypes for the earliest (circa 2010) open-source effort to reverse engineer the sas7bdat file format. The package includes a prototype reader for sas7bdat files. However, newer packages may contain more robust readers for sas7bdat files.
This is an R implementation of a constrained l1 minimization approach for estimating multiple Sparse Gaussian or Nonparanormal Graphical Models (SIMULE). The SIMULE algorithm can be used to estimate multiple related precision matrices. For instance, it can identify context-specific gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogenous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(simuleDemo) to learn the basic functions provided by this package. For further details, please read the original paper: Beilun Wang, Ritambhara Singh, Yanjun Qi (2017) <DOI:10.1007/s10994-017-5635-7>.
Some R functions, such as optim(), require a function its gradient passed as separate arguments. When these are expensive to calculate it may be much faster to calculate the function (fn) and gradient (gr) together since they often share many calculations (chain rule). This package allows the user to pass in a single function that returns both the function and gradient, then splits (hence splitfngr') them so the results can be accessed separately. The functions provided allow this to be done with any number of functions/values, not just for functions and gradients.
This package provides fitting functions and other tools for decision confidence and metacognition researchers, including meta-d'/d', often considered to be the gold standard to measure metacognitive efficiency, and information-theoretic measures of metacognition. Also allows to fit and compare several static models of decision making and confidence.
This package provides methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) "Predictive Analytics for Energy Efficiency and Energy Retailing" <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9> "Enhancing energy efficiency in the residential sector with smart meter data analytics".
An implementation of popular evaluation metrics that are commonly used in survival prediction including Concordance Index, Brier Score, Integrated Brier Score, Integrated Square Error, Integrated Absolute Error and Mean Absolute Error. For a detailed information, see (Ishwaran H, Kogalur UB, Blackstone EH and Lauer MS (2008) <doi:10.1214/08-AOAS169>) , (Moradian H, Larocque D and Bellavance F (2017) <doi:10.1007/s10985-016-9372-1>), (Hanpu Zhou, Hong Wang, Sizheng Wang and Yi Zou (2023) <doi:10.32614/rj-2023-009>) for different evaluation metrics.
Allows users to list data structures using path-based navigation. Provides intuitive methods for storing, accessing, and manipulating nested data through simple path strings. Key features include strict mode validation, path existence checking, recursive operations, and automatic parent-level creation. Designed for use cases requiring organized storage of complex nested data while maintaining simple access patterns. Particularly useful for configuration management, nested settings, and any application where data naturally forms a tree-like structure.
Implementation of Stepwise Clustered Ensemble (SCE) and Stepwise Cluster Analysis (SCA) for multivariate data analysis. The package provides comprehensive tools for feature selection, model training, prediction, and evaluation in hydrological and environmental modeling applications. Key functionalities include recursive feature elimination (RFE), Wilks feature importance analysis, model validation through out-of-bag (OOB) validation, and ensemble prediction capabilities. The package supports both single and multivariate response variables, making it suitable for complex environmental modeling scenarios. For more details see Li et al. (2021) <doi:10.5194/hess-25-4947-2021>.
Basic and model-based soil physical analyses.
Pull data from the STAT Search Analytics API <https://help.getstat.com/knowledgebase/api-services/>. It was developed by the Search Discovery team to help analyze keyword ranking data.
Includes general data manipulation functions, algorithms for statistical disclosure control (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6> and functions for hierarchical computations by sparse model matrices (Langsrud, 2023) <doi:10.32614/RJ-2023-088>.