Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a computationally efficient solution for generating optimal experimental designs in Accelerated Life Testing (ALT). Leveraging a Particle Swarm Optimization (PSO)-based hybrid algorithm, the package identifies optimal test plans that minimize estimation variance under specified failure models and stress profiles. For more detailed, see Lee et al. (2025), Optimal Robust Strategies for Accelerated Life Tests and Fatigue Testing of Polymer Composite Materials, submitted to Annals of Applied Statistics, <https://imstat.org/journals-and-publications/annals-of-applied-statistics/annals-of-applied-statistics-next-issues/>, and Hoang (2025), Model-Robust Minimax Design of Accelerated Life Tests via PSO-based Hybrid Algorithm, Master Thesis, Unpublished.
Fast manipulation of symbolic multivariate polynomials using the Map class of the Standard Template Library. The package uses print and coercion methods from the mpoly package but offers speed improvements. It is comparable in speed to the spray package for sparse arrays, but retains the symbolic benefits of mpoly'. To cite the package in publications, use Hankin 2022 <doi:10.48550/ARXIV.2210.15991>. Uses disordR discipline.
This package provides a suite of conversion functions to create internally standardized spatial polygons data frames. Utility functions use these data sets to return values such as country, state, time zone, watershed, etc. associated with a set of longitude/latitude pairs. (They also make cool maps.).
Estimate Multidimensional Poverty Indices disaggregated by population subgroups based on the Alkire and Foster method (2011) <doi:10.1016/j.jpubeco.2010.11.006>. This includes the calculation of standard errors and confidence intervals. Other partial indices such as incidence, intensity and indicator-specific measures as well as intertemporal changes analysis can also be estimated. The standard errors and confidence intervals are calculated considering the complex survey design.
This package provides a function for plotting multivariate time series data.
This package provides a function for the estimation of mixture of longitudinal factor analysis models using the iterative expectation-maximization algorithm (Ounajim, Slaoui, Louis, Billot, Frasca, Rigoard (2023) <doi:10.1002/sim.9804>) and several tools for visualizing and interpreting the models parameters.
This package provides functions provide comprehensive treatments for estimating, inferring, testing and model selecting in linear regression models with structural breaks. The tests, estimation methods, inference and information criteria implemented are discussed in Bai and Perron (1998) "Estimating and Testing Linear Models with Multiple Structural Changes" <doi:10.2307/2998540>.
This package contains functions to estimate the proportion of effects stronger than a threshold of scientific importance (function prop_stronger), to nonparametrically characterize the distribution of effects in a meta-analysis (calib_ests, pct_pval), to make effect size conversions (r_to_d, r_to_z, z_to_r, d_to_logRR), to compute and format inference in a meta-analysis (format_CI, format_stat, tau_CI), to scrape results from existing meta-analyses for re-analysis (scrape_meta, parse_CI_string, ci_to_var).
This package produces clean and neat Markdown log file and also provide an argument to include the function call inside the Markdown log.
This package provides methods and functions to analyze the quantitative or qualitative performance for diagnostic assays, and outliers detection, reader precision and reference range are discussed. Most of the methods and algorithms refer to CLSI (Clinical & Laboratory Standards Institute) recommendations and NMPA (National Medical Products Administration) guidelines. In additional, relevant plots are constructed by ggplot2'.
This package provides samplers for various matrix variate distributions: Wishart, inverse-Wishart, normal, t, inverted-t, Beta type I, Beta type II, Gamma, confluent hypergeometric. Allows to simulate the noncentral Wishart distribution without the integer restriction on the degrees of freedom.
This package implements an algorithm for computing multiple sparse principal components of a dataset. The method is based on Cory-Wright and Pauphilet "Sparse PCA with Multiple Principal Components" (2022) <doi:10.48550/arXiv.2209.14790>. The algorithm uses an iterative deflation heuristic with a truncated power method applied at each iteration to compute sparse principal components with controlled sparsity.
This package implements modern resampling and permutation methods for robust statistical inference without restrictive parametric assumptions. Provides bias-corrected and accelerated (BCa) bootstrap (Efron and Tibshirani (1993) <doi:10.1201/9780429246593>), wild bootstrap for heteroscedastic regression (Liu (1988) <doi:10.1214/aos/1176351062>, Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>), block bootstrap for time series (Politis and Romano (1994) <doi:10.1080/01621459.1994.10476870>), and permutation-based multiple testing correction (Westfall and Young (1993) <ISBN:0-471-55761-7>). Methods handle non-normal data, heteroscedasticity, time series correlation, and multiple comparisons.
This package implements area level of multivariate small area estimation using Hierarchical Bayesian method under Normal and T distribution. The rjags package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
Incorporates a Bayesian monotonic single-index mixed-effect model with a multivariate skew-t likelihood, specifically designed to handle survey weights adjustments. Features include a simulation program and an associated Gibbs sampler for model estimation. The single-index function is constrained to be monotonic increasing, utilizing a customized Gaussian process prior for precise estimation. The model assumes random effects follow a canonical skew-t distribution, while residuals are represented by a multivariate Student-t distribution. Offers robust Bayesian adjustments to integrate survey weight information effectively.
This package provides a comprehensive set of tools for working with order statistics, including functions for simulating order statistics, censored samples (Type I and Type II), and record values from various continuous distributions. Additionally, it offers functions to compute moments (mean, variance, skewness, kurtosis) of order statistics for several continuous distributions. These tools assist researchers and statisticians in understanding and analyzing the properties of order statistics and related data. The methods and algorithms implemented in this package are based on several published works, including Ahsanullah et al (2013, ISBN:9789491216831), Arnold and Balakrishnan (2012, ISBN:1461236444), Harter and Balakrishnan (1996, ISBN:9780849394522), Balakrishnan and Sandhu (1995) <doi:10.1080/00031305.1995.10476150>, Genç (2012) <doi:10.1007/s00362-010-0320-y>, Makouei et al (2021) <doi:10.1016/j.cam.2021.113386> and Nagaraja (2013) <doi:10.1016/j.spl.2013.06.028>.
The stepwise variable selection procedure (with iterations between the forward and backward steps) can be used to obtain the best candidate final regression model in regression analysis. All the relevant covariates are put on the variable list to be selected. The significance levels for entry (SLE) and for stay (SLS) are usually set to 0.15 (or larger) for being conservative. Then, with the aid of substantive knowledge, the best candidate final regression model is identified manually by dropping the covariates with p value > 0.05 one at a time until all regression coefficients are significantly different from 0 at the chosen alpha level of 0.05.
Multi-omic (or any multi-view) spectral clustering methods often assume the same number of clusters across all datasets. We supply methods for multi-omic spectral clustering when the number of distinct clusters differs among the omics profiles (views).
This package provides tools for performing mathematical morphology operations, such as erosion and dilation, on data of arbitrary dimensionality. Can also be used for finding connected components, resampling, filtering, smoothing and other image processing-style operations.
Analise multivariada, tendo funcoes que executam analise de correspondencia simples (CA) e multipla (MCA), analise de componentes principais (PCA), analise de correlacao canonica (CCA), analise fatorial (FA), escalonamento multidimensional (MDS), analise discriminante linear (LDA) e quadratica (QDA), analise de cluster hierarquico e nao hierarquico, regressao linear simples e multipla, analise de multiplos fatores (MFA) para dados quantitativos, qualitativos, de frequencia (MFACT) e dados mistos, biplot, scatter plot, projection pursuit (PP), grant tour e outras funcoes uteis para a analise multivariada.
This package provides functions for testing randomness for a univariate time series with arbitrary distribution (discrete, continuous, mixture of both types) and for testing independence between random variables with arbitrary distributions. The test statistics are based on the multilinear empirical copula and multipliers are used to compute P-values. The test of independence between random variables appeared in Genest, Nešlehová, Rémillard & Murphy (2019) and the test of randomness appeared in Nasri (2022).
The second version (0.2.0) contains implementation for exact matching which is an alternative to propensity score matching (see Glimm & Yau (2025)). The initial version (0.1.2) contains a collection of easy-to-implement tools for checking whether a MAIC can be conducted, as well as an alternative way of calculating weights (see Glimm & Yau (2021) <doi:10.1002/pst.2210>.).
This package provides a function that wraps mcparallel() and mccollect() from parallel with temporary variables and a task handler. Wrapped in this way the results of an mcparallel() call can be returned to the R session when the fork is complete without explicitly issuing a specific mccollect() to retrieve the value. Outside of top-level tasks, multiple mcparallel() jobs can be retrieved with a single call to mcparallelDoCheck().
This package provides functions to compute and plot multivariate (partial) Mantel correlograms.