Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data package which provides default drug and disease expression profiles for the DvD package.
This package provides a supervised technique able to identify differentially expressed genes, based on the construction of \emphFuzzy Patterns (FPs). The Fuzzy Patterns are built by means of applying 3 Membership Functions to discretized gene expression values.
doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD (retrotransposon-derived duplication) and dTRD (DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks.
distinct is a statistical method to perform differential testing between two or more groups of distributions; differential testing is performed via hierarchical non-parametric permutation tests on the cumulative distribution functions (cdfs) of each sample. While most methods for differential expression target differences in the mean abundance between conditions, distinct, by comparing full cdfs, identifies, both, differential patterns involving changes in the mean, as well as more subtle variations that do not involve the mean (e.g., unimodal vs. bi-modal distributions with the same mean). distinct is a general and flexible tool: due to its fully non-parametric nature, which makes no assumptions on how the data was generated, it can be applied to a variety of datasets. It is particularly suitable to perform differential state analyses on single cell data (i.e., differential analyses within sub-populations of cells), such as single cell RNA sequencing (scRNA-seq) and high-dimensional flow or mass cytometry (HDCyto) data. To use distinct one needs data from two or more groups of samples (i.e., experimental conditions), with at least 2 samples (i.e., biological replicates) per group.
This package implements a DelayedArray of random values where the realization of the sampled values is delayed until they are needed. Reproducible sampling within any subarray is achieved by chunking where each chunk is initialized with a different random seed and stream. The usual distributions in the stats package are supported, along with scalar, vector and arrays for the parameters.
This package provides additional expression data on diffuse large B-cell lymphomas for the BioNet package.
Data for the dyebias package, consisting of 4 self-self hybrizations of self-spotted yeast slides, as well as data from Array Express accession E-MTAB-32.
The depmap package is a data package that accesses datsets from the Broad Institute DepMap cancer dependency study using ExperimentHub. Datasets from the most current release are available, including RNAI and CRISPR-Cas9 gene knockout screens quantifying the genetic dependency for select cancer cell lines. Additional datasets are also available pertaining to the log copy number of genes for select cell lines, protein expression of cell lines as measured by reverse phase protein lysate microarray (RPPA), Transcript Per Million (TPM) data, as well as supplementary datasets which contain metadata and mutation calls for the other datasets found in the current release. The 19Q3 release adds the drug_dependency dataset, that contains cancer cell line dependency data with respect to drug and drug-candidate compounds. The 20Q2 release adds the proteomic dataset that contains quantitative profiling of proteins via mass spectrometry. This package will be updated on a quarterly basis to incorporate the latest Broad Institute DepMap Public cancer dependency datasets. All data made available in this package was generated by the Broad Institute DepMap for research purposes and not intended for clinical use. This data is distributed under the Creative Commons license (Attribution 4.0 International (CC BY 4.0)).
This package provides methods to detect the differential composition abundances between conditions in singel-cell RNA-seq experiments, with or without replicates. It aims to correct bias introduced by missclaisification and enable controlling of confounding covariates. To avoid the influence of proportion change from big cell types, DCATS can use either total cell number or specific reference group as normalization term.
The Delta-Delta-Ct (ddCt) Algorithm is an approximation method to determine relative gene expression with quantitative real-time PCR (qRT-PCR) experiments. Compared to other approaches, it requires no standard curve for each primer-target pair, therefore reducing the working load and yet returning accurate enough results as long as the assumptions of the amplification efficiency hold. The ddCt package implements a pipeline to collect, analyse and visualize qRT-PCR results, for example those from TaqMan SDM software, mainly using the ddCt method. The pipeline can be either invoked by a script in command-line or through the API consisting of S4-Classes, methods and functions.
Intuitive framework for identifying spatially variable genes (SVGs) and differential spatial variable pattern (DSP) between conditions via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. For multi-sample, multi-condition datasets, we again fit a NB model via edgeR, incorporating spatial clusters, conditions and their interactions as covariates. DSP genes-representing differences in spatial gene expression patterns across experimental conditions-are identified by testing the interaction between spatial clusters and conditions.
Bioinformatics platform containing interactive plots and tables for differential gene and region expression studies. Allows visualizing expression data much more deeply in an interactive and faster way. By changing the parameters, users can easily discover different parts of the data that like never have been done before. Manually creating and looking these plots takes time. With DEBrowser users can prepare plots without writing any code. Differential expression, PCA and clustering analysis are made on site and the results are shown in various plots such as scatter, bar, box, volcano, ma plots and Heatmaps.
DelayedTensor operates Tensor arithmetic directly on DelayedArray object. DelayedTensor provides some generic function related to Tensor arithmetic/decompotision and dispatches it on the DelayedArray class. DelayedTensor also suppors Tensor contraction by einsum function, which is inspired by numpy einsum.
DEWSeq is a sliding window approach for the analysis of differentially enriched binding regions eCLIP or iCLIP next generation sequencing data.
Inference of Genetic Variants Driving Cellullar Phenotypes by the DIGGIT algorithm.
Integrated peak and differential caller, specifically designed for broad epigenomic signals.
This packages provides a single function, readEDS. This is a low-level utility for reading in Alevin EDS format into R. This function is not designed for end-users but instead the package is predominantly for simplifying package dependency graph for other Bioconductor packages.
Base annotation databases for E coli K12 Strain, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
An Empirical Bayesian Approach to Differential Co-Expression Analysis at the Gene-Pair Level.
This package builds on existing tools and adds some simple but extremely useful capabilities for working wth ChIP-Seq data. The focus is on detecting differential binding windows/regions. One set of functions focusses on set-operations retaining mcols for GRanges objects, whilst another group of functions are to aid visualisation of results. Coercion to tibble objects is also implemented.
This package allows user to quickly access ENCODE project files metadata and give access to helper functions to query the ENCODE rest api, download ENCODE datasets and save the database in SQLite format.
The EMDomics algorithm is used to perform a supervised multi-class analysis to measure the magnitude and statistical significance of observed continuous genomics data between groups. Usually the data will be gene expression values from array-based or sequence-based experiments, but data from other types of experiments can also be analyzed (e.g. copy number variation). Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Microarray Data (LIMMA) use significance tests based on summary statistics (mean and standard deviation) of the distributions. This approach lacks power to identify expression differences between groups that show high levels of intra-group heterogeneity. The Earth Mover's Distance (EMD) algorithm instead computes the "work" needed to transform one distribution into another, thus providing a metric of the overall difference in shape between two distributions. Permutation of sample labels is used to generate q-values for the observed EMD scores. This package also incorporates the Komolgorov-Smirnov (K-S) test and the Cramer von Mises test (CVM), which are both common distribution comparison tests.
Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for one or more matrix-like assays along with the associated row and column data. Often only a subset of the original data is needed for down-stream analysis. For example, filtering out poor quality samples will require excluding some columns before analysis. The ExperimentSubset object is a container to efficiently manage different subsets of the same data without having to make separate objects for each new subset.
This package provides pre-processed RNA-seq data where the epithelial to mesenchymal transition was induced on cell lines. These data come from three publications Cursons et al. (2015), Cursons etl al. (2018) and Foroutan et al. (2017). In each of these publications, EMT was induces across multiple cell lines following treatment by TGFb among other stimulants. This data will be useful in determining the regulatory programs modified in order to achieve an EMT. Data were processed by the Davis laboratory in the Bioinformatics division at WEHI.