Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of logistic normal multinomial (LNM) clustering. It is an extension of LNM mixture model proposed by Fang and Subedi (2020) <arXiv:2011.06682>, and is designed for clustering compositional data. The package includes 3 extended models: LNM Factor Analyzer (LNM-FA), LNM Bicluster Mixture Model (LNM-BMM) and Penalized LNM Factor Analyzer (LNM-FA). There are several advantages of LNM models: 1. LNM provides more flexible covariance structure; 2. Factor analyzer can reduce the number of parameters to estimate; 3. Bicluster can simultaneously cluster subjects and taxa, and provides significant biological insights; 4. Penalty term allows sparse estimation in the covariance matrix. Details for model assumptions and interpretation can be found in papers: Tu and Subedi (2021) <arXiv:2101.01871> and Tu and Subedi (2022) <doi:10.1002/sam.11555>.
This package provides R bindings to the llama.cpp library for running large language models. The package uses a lightweight architecture where the C++ backend library is downloaded at runtime rather than bundled with the package. Package features include text generation, reproducible generation, and parallel inference.
Recursive partition algorithms designed for fitting survival trees with left-truncated and right-censored (LTRC) data, as well as interval-censored data. The LTRC trees can also be used to fit survival trees with time-varying covariates.
This package provides a function for classifying a landscape into different categories based on the Topographic Position Index (TPI) and slope. It offers two types of classifications: Slope Position Classification, and Landform Classification. The function internally calculates the TPI for the given landscape and then uses it along with the slope to perform the classification. Optionally, descriptive statistics for every class are calculated and plotted. The classifications are useful for identifying the position of a location on a slope and for identifying broader landform types.
This package provides histograms, boxplots and dotplots as alternatives to scatterplots of data when plotting fitted logistic regressions.
Estimates a lognormal-Pareto mixture by means of the Expectation-Conditional-Maximization-Either algorithm and by maximizing the profile likelihood function. A likelihood ratio test for discriminating between lognormal and Pareto tail is also implemented. See Bee, M. (2022) <doi:10.1007/s11634-022-00497-4>.
Adds standardized regression coefficients to objects created by lm'. Also extends the S3 methods print', summary and coef with additional boolean argument standardized and provides xtable'-support.
This package provides R with the Glottolog database <https://glottolog.org/> and some more abilities for purposes of linguistic mapping. The Glottolog database contains the catalogue of languages of the world. This package helps researchers to make a linguistic maps, using philosophy of the Cross-Linguistic Linked Data project <https://clld.org/>, which allows for while at the same time facilitating uniform access to the data across publications. A tutorial for this package is available on GitHub pages <https://docs.ropensci.org/lingtypology/> and package vignette. Maps created by this package can be used both for the investigation and linguistic teaching. In addition, package provides an ability to download data from typological databases such as WALS, AUTOTYP and some others and to create your own database website.
An easy tool to transform 2D longitudinal data into 3D arrays suitable for Long short-term memory neural networks training. The array output can be used by the keras package. Long short-term memory neural networks are described in: Hochreiter, S., & Schmidhuber, J. (1997) <doi:10.1162/neco.1997.9.8.1735>.
This package provides the method for computing the local partial autocorrelation function for locally stationary wavelet time series from Killick, Knight, Nason, Eckley (2020) <doi:10.1214/20-EJS1748>.
Supervised classification methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in PK Josephine et. al., (2021) <doi:10.59176/kjcs.v1i1.1259>; and datasets to test them on, which highlight the strengths and weaknesses of each technique.
Brings together a comprehensive collection of R packages providing access to API functions and curated datasets from Argentina, Brazil, Chile, Colombia, and Peru. Includes real-time and historical data through public RESTful APIs ('Nager.Date', World Bank API, REST Countries API, and country-specific APIs) and extensive curated collections of open datasets covering economics, demographics, public health, environmental data, political indicators, social metrics, and cultural information. Designed to provide researchers, analysts, educators, and data scientists with centralized access to Latin American data sources, facilitating reproducible research, comparative analysis, and teaching applications focused on these five major Latin American countries. Included packages: - ArgentinAPI': API functions and curated datasets for Argentina covering exchange rates, inflation, political figures, national holidays and more. - BrazilDataAPI': API functions and curated datasets for Brazil covering postal codes, banks, economic indicators, holidays, company registrations and more. - ChileDataAPI': API functions and curated datasets for Chile covering financial indicators ('UF', UTM, Dollar, Euro, Yen, Copper, Bitcoin, IPSA index), holidays and more. - ColombiAPI': API functions and curated datasets for Colombia covering geographic locations, cultural attractions, economic indicators, demographic data, national holidays and more. - PeruAPIs': API functions and curated datasets for Peru covering economic indicators, demographics, national holidays, administrative divisions, electoral data, biodiversity and more. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, REST Countries API <https://restcountries.com/>, ArgentinaDatos API <https://argentinadatos.com/>, BrasilAPI <https://brasilapi.com.br/>, FINDIC <https://findic.cl/>, and API-Colombia <https://api-colombia.com/>.
R lists, especially nested lists, can be very difficult to visualize or represent. Sometimes str() is not enough, so this suite of htmlwidgets is designed to help see, understand, and maybe even modify your R lists. The function reactjson() requires a package reactR that can be installed from CRAN or <https://github.com/timelyportfolio/reactR>.
This package provides a suite of tools for estimating, assessing model fit, simulating from, and visualizing location dependent marked point processes characterized by regularity in the pattern. You provide a reference marked point process, a set of raster images containing location specific covariates, and select the estimation algorithm and type of mark model. ldmppr estimates the process and mark models and allows you to check the appropriateness of the model using a variety of diagnostic tools. Once a satisfactory model fit is obtained, you can simulate from the model and visualize the results. Documentation for the package ldmppr is available in the form of a vignette.
Lights Out is a puzzle game consisting of a grid of lights that are either on or off. Pressing any light will toggle it and its adjacent lights. The goal of the game is to switch all the lights off. This package provides an interface to play the game on different board sizes, both through the command line or with a visual application. Puzzles can also be solved using the automatic solver included. View a demo online at <https://daattali.com/shiny/lightsout/>.
This package provides regularized structural equation modeling (regularized SEM) with non-smooth penalty functions (e.g., lasso) building on lavaan'. The package is heavily inspired by the ['regsem'](<https://github.com/Rjacobucci/regsem>) and ['lslx'](<https://github.com/psyphh/lslx>) packages.
Implementation of the algorithm introduced in Shah, R. D. (2016) <https://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits, so the algorithm is very efficient.
Collect marketing data from LinkedIn Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Targeted Maximum Likelihood Estimation ('TMLE') of treatment/censoring specific mean outcome or marginal structural model for point-treatment and longitudinal data.
Generate concentration-time profiles from linear pharmacokinetic (PK) systems, possibly with first-order absorption or zero-order infusion, possibly with one or more peripheral compartments, and possibly under steady-state conditions. Single or multiple doses may be specified. Secondary (derived) PK parameters (e.g. Cmax, Ctrough, AUC, Tmax, half-life, etc.) are computed.
This package provides functions for estimating the gliding box lacunarity (GBL), covariance, and pair-correlation of a random closed set (RACS) in 2D from a binary coverage map (e.g. presence-absence land cover maps). Contains a number of newly-developed covariance-based estimators of GBL (Hingee et al., 2019) <doi:10.1007/s13253-019-00351-9> and balanced estimators, proposed by Picka (2000) <http://www.jstor.org/stable/1428408>, for covariance, centred covariance, and pair-correlation. Also contains methods for estimating contagion-like properties of RACS and simulating 2D Boolean models. Binary coverage maps are usually represented as raster images with pixel values of TRUE, FALSE or NA, with NA representing unobserved pixels. A demo for extracting such a binary map from a geospatial data format is provided. Binary maps may also be represented using polygonal sets as the foreground, however for most computations such maps are converted into raster images. The package is based on research conducted during the author's PhD studies.
The aim of the package is to create data objects which allow for accesses like x["test"] and x["test","test"].
Fit right censored Multiple Ordinal Tobit (MOT) model.
This package contains functions to estimate a penalized regression model using 3CoSE algorithm, see Weber, Striaukas, Schumacher Binder (2018) <doi:10.2139/ssrn.3211163>.