Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We consider the problem where we observe k vectors (possibly of different lengths), each representing an independent multinomial random vector. For a given function that takes in the concatenated vector of multinomial probabilities and outputs a real number, this is a Monte Carlo estimation procedure of an exact p-value and confidence interval. The resulting inference is valid even in small samples, when the parameter is on the boundary, and when the function is not differentiable at the parameter value, all situations where asymptotic methods and the bootstrap would fail. For more details see Sachs, Fay, and Gabriel (2025) <doi:10.48550/arXiv.2406.19141>.
Extras and extensions for xaringan slides. Navigate your slides with tile view. Make your slides editable, live! Announce slide changes with subtle tones. Animate slide transitions with animate.css'. Add tabbed panels to slides with panelset'. Use the Tachyons CSS utility toolkit for rapid slide development. Scribble on your slides. Add a copy button to your code chunks with clipboard'. Add a logo or top or bottom banner to every slide. Broadcast slides to stay in sync with remote viewers. Include yourself in your slides with webcam'. Plus a whole lot more!
The XKCD color survey asked participants to name colours. Randall Munroe published the top thousand(roughly) names and their sRGB hex values. This package lets you use them.
This package provides tools for reading, parsing and visualizing simulation data stored in xvg'/'xpm file formats (commonly generated by GROMACS molecular dynamics software). Streamlines post-processing and analysis of molecular dynamics ('MD') simulation outputs, enabling efficient exploration of molecular stability and conformational changes. Supports import of trajectory metrics ('RMSD', energy, temperature) and creation of publication-ready visualizations through integration with ggplot2'.
High-level functions to render LaTeX fragments in plots, including as labels and data symbols in ggplot2 plots, plus low-level functions to author LaTeX fragments (to produce LaTeX documents), typeset LaTeX documents (to produce DVI files), read DVI files (to produce "DVI" objects), and render "DVI" objects.
Helps systematize and ease the process of building unit tests with the testthat package by providing tools for generating expectations.
Institutional performance assessment remains a key challenge to a multitude of stakeholders. Existing indicators such as h-type indicators, g-type indicators, and many others do not reflect expertise of institutions that defines their research portfolio. The package offers functionality to compute and visualise two novel indices: the x-index and the xd-index. The x-index evaluates an institution's scholarly expertise within a specific discipline or field, while the xd-index provides a broader assessment of overall scholarly expertise considering an institution's publication pattern and strengths across coarse thematic areas. These indices offer a nuanced understanding of institutional research capabilities, aiding stakeholders in research management and resource allocation decisions. Lathabai, H.H., Nandy, A., and Singh, V.K. (2021) <doi:10.1007/s11192-021-04188-3>. Nandy, A., Lathabai, H.H., and Singh, V.K. (2023) <doi:10.5281/zenodo.8305585>. This package provides the h, g, x, and xd indices for use with standard format of Web of Science (WoS) scrapped datasets.
This package contains functions to identify tree-ring borders based on X-ray micro-density profiles and a Graphical User Interface (GUI) to visualize density profiles and correct tree-ring borders. Campelo F, Mayer K, Grabner M. (2019) <doi:10.1016/j.dendro.2018.11.002>.
Implementation of a scalable, highly configurable, and e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms. Multiple representations (binary, real-coded, permutation, and derivation-tree), a rich collection of genetic operators, as well as an extended processing pipeline are provided for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)), differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7)), grammar-based genetic programming (Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), grammatical evolution (Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>), and grammatical differential evolution (O'Neill, M. and Brabazon, A. (2006) in Arabinia, H. (2006, ISBN:978-193-241596-3). All algorithms reuse basic adaptive mechanisms for performance optimization. For xega's architecture, see Geyer-Schulz, A. (2025) <doi:10.5445/IR/1000187255>. Sequential or parallel execution (on multi-core machines, local clusters, and high-performance computing environments) is available for all algorithms. See <https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.
There are two new network metrics, RWC (random walk centrality) and CBET (counting betweenness). Also available are the normalized versions of those metrics. These measures of centrality and betweenness are particularly useful for the analysis of very dense weighted networks which include loops. Traditional measures do not work as well for those network characteristics. The main reference is DePaolis at al (2022) <doi:10.1007/s41109-022-00519-2>.
Computes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140> This package includes the Galton peas example.
Reading and writing sheets of a single Excel file into and from a list of data frames. Eases I/O of tabular data in bioinformatics while keeping them in a human readable format.
The X13-ARIMA-SEATS <https://www.census.gov/data/software/x13as.html> methodology and software is a widely used software and developed by the US Census Bureau. It can be accessed from R with this package and X13-ARIMA-SEATS binaries are provided by the R package x13binary'.
An implementation of the representation-dependent gene level operations of grammar-based genetic programming with genes which are derivation trees of a context-free grammar: Initialization of a gene with a complete random derivation tree, decoding of a derivation tree. Crossover is implemented by exchanging subtrees. Depth-bounds for the minimal and the maximal depth of the roots of the subtrees exchanged by crossover can be set. Mutation is implemented by replacing a subtree by a random subtree. The depth of the random subtree and the insertion node are configurable. For details, see Geyer-Schulz (1997, ISBN:978-3-7908-0830-X).
This collection of gene representation-independent mechanisms for evolutionary and genetic algorithms contains four groups of functions: First, functions for selecting a gene in a population of genes according to its fitness value and for adaptive scaling of the fitness values as well as for performance optimization and measurement offer several variants for implementing the survival of the fittest. Second, evaluation functions for deterministic functions avoid recomputation. Evaluation of stochastic functions incrementally improve the estimation of the mean and variance of fitness values at almost no additional cost. Evaluation functions for gene repair handle error-correcting decoders. Third, timing and counting functions for profiling the algorithm pipeline are provided to assess bottlenecks in the algorithms. Fourth, a small collection of problem environments for function optimization, combinatorial optimization, and grammar-based genetic programming and grammatical evolution is provided for tutorial examples. The methods in the package are described by the following references: Baker, James E. (1987, ISBN:978-08058-0158-8), De Jong, Kenneth A. (1975) <https://deepblue.lib.umich.edu/handle/2027.42/4507>, Geyer-Schulz, Andreas (1997, ISBN:978-3-7908-0830-X), Grefenstette, John J. (1987, ISBN:978-08058-0158-8), Grefenstette, John J. and Baker, James E. (1989, ISBN:1-55860-066-3), Holland, John (1975, ISBN:0-472-08460-7), Lau, H. T. (1986) <doi:10.1007/978-3-642-61649-5>, Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>, Reynolds, J. C. (1993) <doi:10.1007/BF01019459>, Schaffer, J. David (1989, ISBN:1-55860-066-3), Wenstop, Fred (1980) <doi:10.1016/0165-0114(80)90031-7>, Whitley, Darrell (1989, ISBN:1-55860-066-3), Wickham, Hadley (2019, ISBN:978-815384571).
An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and glmnet is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.
This tool enables in-database scoring of XGBoost models built in R, by translating trained model objects into SQL query. XGBoost <https://github.com/dmlc/xgboost> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on XGBoost can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package implements an iterative mean-variance panel regression estimator that allows both the mean and variance of the dependent variable to be functions of covariates. The method alternates between estimating a mean equation (using generalized linear models with Gaussian family) and a variance equation (using generalized linear models with Gamma family on squared within-group residuals) until convergence. Based on the methodology in Mooi-Reci and Liao (2025) <doi:10.1093/esr/jcae052>.
This package provides a set of functions devoted to multivariate exploratory statistics on textual data. Classical methods such as correspondence analysis and agglomerative hierarchical clustering are available. Chronologically constrained agglomerative hierarchical clustering enriched with labelled-by-words trees is offered. Given a division of the corpus into parts, their characteristic words and documents are identified. Further, accessing to FactoMineR functions is very easy. Two of them are relevant in textual domain. MFA() addresses multiple lexical table allowing applications such as dealing with multilingual corpora as well as simultaneously analyzing both open-ended and closed questions in surveys. See <http://xplortext.unileon.es> for examples.
Extremely fast hashing of R objects using xxHash'. R objects are hashed via the standard serialization mechanism in R. Raw byte vectors and strings can be handled directly for compatibility with hashes created on other systems. This implementation is a wrapper around the xxHash C library which is available from <https://github.com/Cyan4973/xxHash>.
Converts XML documents to R dataframes and dataframes to XML documents. A wide variety of options allows for different XML formats and flexible control of the conversion process. Results can be exported to CSV and Excel, if desired. Also converts XML data to R lists.
Derivation tree operations are needed for implementing grammar-based genetic programming and grammatical evolution: Generating a random derivation trees of a context-free grammar of bounded depth, decoding a derivation tree, choosing a random node in a derivation tree, extracting a tree whose root is a specified node, and inserting a subtree into a derivation tree at a specified node. These operations are necessary for the initialization and for decoders of a random population of programs, as well as for implementing crossover and mutation operators. Depth-bounds are guaranteed by switching to a grammar without recursive production rules. For executing the examples, the package BNF is needed. The basic tree operations for generating, extracting, and inserting derivation trees as well as the conditions for guaranteeing complete derivation trees have been presented in Geyer-Schulz (1997, ISBN:978-3-7908-0830-X). The use of random integer vectors for the generation of derivation trees has been introduced in Ryan, C., Collins, J. J., and O'Neill, M. (1998) <doi:10.1007/BFb0055930> for grammatical evolution.
This package provides tools to build CDISC compliant data sets and check for CDISC compliance.
Helpers for transforming XML content into number of tables while preserving parent to child relationships.