Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Amends errors, augments data and aids analysis of John Snow's map of the 1854 London cholera outbreak.
Calculating crude sequence ratio, adjusted sequence ratio and confidence intervals using data mapped to the Observational Medical Outcomes Partnership Common Data Model.
Create an addin in Rstudio to do fill-in-the-middle (FIM) and chat with latest Mistral AI models for coding, Codestral and Codestral Mamba'. For more details about Mistral AI API': <https://docs.mistral.ai/getting-started/quickstart/> and <https://docs.mistral.ai/api/>. For more details about Codestral model: <https://mistral.ai/news/codestral>; about Codestral Mamba': <https://mistral.ai/news/codestral-mamba>.
This package contains the function calendR() for creating fully customizable monthly and yearly calendars (colors, fonts, formats, ...) and even heatmap calendars. In addition, it allows saving the calendars in ready to print A4 format PDF files.
The Crunch.io service <https://crunch.io/> provides a cloud-based data store and analytic engine, as well as an intuitive web interface. Using this package, analysts can interact with and manipulate Crunch datasets from within R. Importantly, this allows technical researchers to collaborate naturally with team members, managers, and clients who prefer a point-and-click interface.
Reading and writing of files in the most commonly used formats of structural crystallography. It includes functions to work with a variety of statistics used in this field and functions to perform basic crystallographic computing. References: D. G. Waterman, J. Foadi, G. Evans (2011) <doi:10.1107/S0108767311084303>.
This package provides a device closing function which is able to crop graphics (e.g., PDF, PNG files) on Unix-like operating systems with the required underlying command-line tools installed.
Computes confidence intervals for the positive predictive value (PPV) and negative predictive value (NPV) based on varied scenarios. In situations where the proportion of diseased subjects does not correspond to the disease prevalence (e.g. case-control studies), this package provides two types of solutions: 1) five methods for estimating confidence intervals for PPV and NPV via ratio of two binomial proportions including Gart & Nam (1988), Walter (1975), MOVER-J (Laud, 2017), Fieller (1954), and Bootstrap (Efron, 1979); 2) three direct methods that compute the confidence intervals including Pepe (2003), Zhou (2007), and Delta. In prospective studies where the proportion of diseased subjects is an unbiased estimate of the disease prevalence, this package provides several methods for calculating the confidence intervals for PPV and NPV including Clopper-Pearson, Wald, Wilson, Agresti-Coull, and Beta. See the Details and References sections in the corresponding functions.
This package performs regression analysis for longitudinal count data, allowing for serial dependence among observations from a given individual and two dimensional random effects on the linear predictor. Estimation is via maximization of the exact likelihood of a suitably defined model. Missing values and unbalanced data are allowed. Details can be found in the accompanying scientific papers: Goncalves & Cabral (2021, Journal of Statistical Software, <doi:10.18637/jss.v099.i03>) and Goncalves et al. (2007, Computational Statistics & Data Analysis, <doi:10.1016/j.csda.2007.03.002>).
An interface to the cycle routing/data services provided by CycleStreets', a not-for-profit social enterprise and advocacy organisation. The application programming interfaces (APIs) provided by CycleStreets are documented at (<https://www.cyclestreets.net/api/>). The focus of this package is the journey planning API, which aims to emulate the routes taken by a knowledgeable cyclist. An innovative feature of the routing service of its provision of fastest, quietest and balanced profiles. These represent routes taken to minimise time, avoid traffic and compromise between the two, respectively.
An interactive platform for clustering analysis and teaching based on the shiny web application framework. Supports multiple popular clustering algorithms including k-means, hierarchical clustering, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), PAM (Partitioning Around Medoids), GMM (Gaussian Mixture Model), and spectral clustering. Users can upload datasets or use built-in ones, visualize clustering results using dimensionality reduction methods such as Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), evaluate clustering quality via silhouette plots, and explore method-specific visualizations and guides. For details on implemented methods, see: Reynolds (2009, ISBN:9781598296975) for GMM; Luxburg (2007) <doi:10.1007/s11222-007-9033-z> for spectral clustering.
An implementation of methods for causal discovery in a structural causal model where the conditional distribution of the target node is described by a generalized linear model conditional on its causal parents.
Easily create color-coded (choropleth) maps in R. No knowledge of cartography or shapefiles needed; go directly from your geographically identified data to a highly customizable map with a single line of code! Supported geographies: U.S. states, counties, census tracts, and zip codes, world countries and sub-country regions (e.g., provinces, prefectures, etc.).
Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) <doi:10.1093/biomet/asn018>, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) <doi:10.1002/pst.1514> and a new correlation corrected weighted Hochberg for correlated endpoints.
This package provides data on countries and their main city or agglomeration and the different distance measures and dummy variables indicating whether two countries are contiguous, share a common language or a colonial relationship. The reference article for these datasets is Mayer and Zignago (2011) <http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=3877>.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://www.epa.gov/comptox-tools/computational-toxicology-and-exposure-apis>. ctxR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
In discrimination experiments candidates are sent on the same test (e.g. job, house rental) and one examines whether they receive the same outcome. The number of non negative answers are first examined in details looking for outcome differences. Then various statistics are computed. This package can also be used for analyzing the results from random experiments.
This package provides a set of functions for conducting cognitive diagnostic computerized adaptive testing applications (Chen, 2009) <DOI:10.1007/s11336-009-9123-2>). It includes different item selection rules such us the global discrimination index (Kaplan, de la Torre, and Barrada (2015) <DOI:10.1177/0146621614554650>) and the nonparametric selection method (Chang, Chiu, and Tsai (2019) <DOI:10.1177/0146621618813113>), as well as several stopping rules. Functions for generating item banks and responses are also provided. To guide item bank calibration, model comparison at the item level can be conducted using the two-step likelihood ratio test statistic by Sorrel, de la Torre, Abad and Olea (2017) <DOI:10.1027/1614-2241/a000131>.
Statistical tests for the comparison between two or more alpha coefficients based on either dependent or independent groups of individuals. A web interface is available at http://comparingcronbachalphas.org. A plugin for the R GUI and IDE RKWard is included. Please install RKWard from https:// rkward.kde.org to use this feature. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard.
Supporting functionality to run caret with spatial or spatial-temporal data. caret is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial or spatial-temporal modelling tasks using caret'. It includes the newly suggested Nearest neighbor distance matching cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models. Methods are described in Meyer et al. (2018) <doi:10.1016/j.envsoft.2017.12.001>; Meyer et al. (2019) <doi:10.1016/j.ecolmodel.2019.108815>; Meyer and Pebesma (2021) <doi:10.1111/2041-210X.13650>; MilĂ et al. (2022) <doi:10.1111/2041-210X.13851>; Meyer and Pebesma (2022) <doi:10.1038/s41467-022-29838-9>; Linnenbrink et al. (2023) <doi:10.5194/egusphere-2023-1308>; Schumacher et al. (2024) <doi:10.5194/egusphere-2024-2730>. The package is described in detail in Meyer et al. (2024) <doi:10.48550/arXiv.2404.06978>.
Utility functions to facilitate the import, the reporting and analysis of clinical data. Example datasets in SDTM and ADaM format, containing a subset of patients/domains from the CDISC Pilot 01 study are also available as R datasets to demonstrate the package functionalities.
Every research team have their own script for data management, statistics and most importantly hemodynamic indices. The purpose is to standardize scripts utilized in clinical research. The hemodynamic indices can be used in a long-format dataframe, and add both periods of interest (trigger-periods), and delete artifacts with deleter-files. Transfer function analysis (Claassen et al. (2016) <doi:10.1177/0271678X15626425>) and Mx (Czosnyka et al. (1996) <doi:10.1161/01.str.27.10.1829>) can be calculated using this package.
Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.
The Certifiably Optimal RulE ListS (Corels) learner by Angelino et al described in <doi:10.48550/arXiv.1704.01701> provides interpretable decision rules with an optimality guarantee, and is made available to R with this package. See the file AUTHORS for a list of copyright holders and contributors.