Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of some functions to create quizzes in the GIFT format. This format is used by several Virtual Learning Environments such as Moodle.
This package provides an R scripting interface to the open-source SAGA-GIS (System for Automated Geoscientific Analyses Geographical Information System) software. Rsagacmd dynamically generates R functions for every SAGA-GIS geoprocessing tool based on the user's currently installed SAGA-GIS version. These functions are contained within an S3 object and are accessed as a named list of libraries and tools. This structure facilitates an easier scripting experience by organizing the large number of SAGA-GIS geoprocessing tools (>700) by their respective library. Interactive scripting can fully take advantage of code autocompletion tools (e.g. in RStudio'), allowing for each tools syntax to be quickly recognized. Furthermore, the most common types of spatial data (via the terra', sp', and sf packages) along with non-spatial data are automatically passed from R to the SAGA-GIS command line tool for geoprocessing operations, and the results are loaded as the appropriate R object. Outputs from individual SAGA-GIS tools can also be chained using pipes from the magrittr and dplyr packages to combine complex geoprocessing operations together in a single statement. SAGA-GIS is available under a GPLv2 / LGPLv2 licence from <https://sourceforge.net/projects/saga-gis/> including Windows x86/x64 and macOS binaries. SAGA-GIS is also included in Debian/Ubuntu default software repositories. Rsagacmd has currently been tested on SAGA-GIS versions from 2.3.1 to 9.5.1 on Windows, Linux and macOS.
The Ryan-Holm step-down Bonferroni or Sidak procedure is to control the family-wise (experiment-wise) type I error rate in the multiple comparisons. This procedure provides the adjusting p-values and adjusting CIs. The methods used in this package are referenced from John Ludbrook (2000) <doi:10.1046/j.1440-1681.2000.03223.x>.
Extends the functionality of the RTMB <https://kaskr.r-universe.dev/RTMB> package by providing a collection of non-standard probability distributions compatible with automatic differentiation (AD). While RTMB enables flexible and efficient modelling, including random effects, its built-in support is limited to standard distributions. The package adds additional AD-compatible distributions, broadening the range of models that can be implemented and estimated using RTMB'. Automatic differentiation and Laplace approximation are described in Kristensen et al. (2016) <doi:10.18637/jss.v070.i05>.
The Coinbase Advanced Trade API <https://docs.cdp.coinbase.com/api-reference/advanced-trade-api/rest-api/introduction> lets you manage orders, portfolios, products, and fees with the new v3 endpoints.
This package provides a series of functions to call AD Model Builder (i.e., compile and run models) from within R, read the results back into R as admb objects, and provide standard accessors (i.e. coef(), vcov(), etc.).
This package provides functions to estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker.
Designed to streamline data analysis and statistical testing, reducing the length of R scripts while generating well-formatted outputs in pdf', Microsoft Word', and Microsoft Excel formats. In essence, the package contains functions which are sophisticated wrappers around existing R functions that are called by using f_ (user f_riendly) prefix followed by the normal function name. This first version of the rfriend package focuses primarily on data exploration, including tools for creating summary tables, f_summary(), performing data transformations, f_boxcox() in part based on MASS/boxcox and rcompanion', and f_bestNormalize() which wraps and extends functionality from the bestNormalize package. Furthermore, rfriend can automatically (or on request) generate visualizations such as boxplots, f_boxplot(), QQ-plots, f_qqnorm(), histograms f_hist(), and density plots. Additionally, the package includes four statistical test functions: f_aov(), f_kruskal_test(), f_glm(), f_chisq_test for sequential testing and visualisation of the stats functions: aov(), kruskal.test(), glm() and chisq.test. These functions support testing multiple response variables and predictors, while also handling assumption checks, data transformations, and post hoc tests. Post hoc results are automatically summarized in a table using the compact letter display (cld) format for easy interpretation. The package also provides a function to do model comparison, f_model_comparison(), and several utility functions to simplify common R tasks. For example, f_clear() clears the workspace and restarts R with a single command; f_setwd() sets the working directory to match the directory of the current script; f_theme() quickly changes RStudio themes; and f_factors() converts multiple columns of a data frame to factors, and much more. If you encounter any issues or have feature requests, please feel free to contact me via email.
Access data stored in REDCap databases using the Application Programming Interface (API). REDCap (Research Electronic Data CAPture; <https://projectredcap.org>, Harris, et al. (2009) <doi:10.1016/j.jbi.2008.08.010>, Harris, et al. (2019) <doi:10.1016/j.jbi.2019.103208>) is a web application for building and managing online surveys and databases developed at Vanderbilt University. The API allows users to access data and project meta data (such as the data dictionary) from the web programmatically. The redcapAPI package facilitates the process of accessing data with options to prepare an analysis-ready data set consistent with the definitions in a database's data dictionary.
This package provides tools for optimal subset matching of treated units and control units in observational studies, with support for refined covariate balance constraints, (including fine and near-fine balance as special cases). A close relative is the rcbalance package. See Pimentel, et al.(2015) <doi:10.1080/01621459.2014.997879> and Pimentel and Kelz (2020) <doi:10.1080/01621459.2020.1720693>. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
Set of classes and methods to read data and metadata documents exchanged through the Statistical Data and Metadata Exchange (SDMX) framework, currently focusing on the SDMX XML standard format (SDMX-ML).
Implemented fast and memory-efficient Notch-filter, Welch-periodogram, discrete wavelet spectrogram for minutes of high-resolution signals, fast 3D convolution, image registration, 3D mesh manipulation; providing fundamental toolbox for intracranial Electroencephalography (iEEG) pipelines. Documentation and examples about RAVE project are provided at <https://rave.wiki>, and the paper by John F. Magnotti, Zhengjia Wang, Michael S. Beauchamp (2020) <doi:10.1016/j.neuroimage.2020.117341>; see citation("ravetools") for details.
Client for accessing data journalism APIs from ProPublica <http://www.propublica.org/>.
With this package we provide an easy method to compute robust and conditional Data Envelopment Analysis (DEA), Free Disposal Hull (FDH) and Benefit of the Doubt (BOD) scores. The robust approach is based on the work of Cazals, Florens and Simar (2002) <doi:10.1016/S0304-4076(01)00080-X>. The conditional approach is based on Daraio and Simar (2007) <doi:10.1007/s11123-007-0049-3>. Besides we provide graphs to help with the choice of m. We relay on the Benchmarking package to compute the efficiency scores and on the np package to compute non parametric estimation of similarity among units.
KEEL is a popular Java software for a large number of different knowledge data discovery tasks. This package takes the advantages of KEEL and R, allowing to use KEEL algorithms in simple R code. The implemented R code layer between R and KEEL makes easy both using KEEL algorithms in R as implementing new algorithms for RKEEL in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about KEEL', see <http://www.keel.es/>.
This package performs exploratory projection pursuit via REPPlab (Daniel Fischer, Alain Berro, Klaus Nordhausen & Anne Ruiz-Gazen (2019) <doi:10.1080/03610918.2019.1626880>) using a Shiny app.
This package provides methods for Resampling-based False Discovery Proportion control. A function is provided that provides simultaneous, multi-resolution False Discovery Exceedance (FDX) control as described in Hemerik (2025) <doi:10.48550/arXiv.2509.02376>.
Encapsulates functions to streamline calls from R to the REDCap API. REDCap (Research Electronic Data CAPture) is a web application for building and managing online surveys and databases developed at Vanderbilt University. The Application Programming Interface (API) offers an avenue to access and modify data programmatically, improving the capacity for literate and reproducible programming.
This package provides tools for basic and advance cancer statistics and graphics. Groups individual data, merges registry data and population data, calculates age-specific rate, age-standardized rate, cumulative risk, estimated annual percentage rate with standards error. Creates graphics across variable and time, such as age-specific trends, bar chart and period-cohort trends.
R Markdown format for reveal.js presentations, a framework for easily creating beautiful presentations using HTML.
Principal Component Analysis (PCA) is a statistical technique used to reduce the dimensionality of a dataset while preserving as much variability as possible. By transforming the original variables into a new set of uncorrelated variables called principal components, PCA helps in identifying patterns and simplifying the complexity of high-dimensional data. The RankPCA package provides a streamlined workflow for performing PCA on datasets containing both categorical and continuous variables. It facilitates data preprocessing, encoding of categorical variables, and computes PCA to determine the optimal number of principal components based on a specified variance threshold. The package also computes composite indices for ranking observations, which can be useful for various analytical purposes. Garai, S., & Paul, R. K. (2023) <doi:10.1016/j.iswa.2023.200202>.
Reproducible research tools automates the creation of an analysis directory structure and work flow. There are R markdown skeletons which encapsulate typical analytic work flow steps. Functions will create appropriate modules which may pass data from one step to another.
Implementation of various spirometry equations in R, currently the GLI-2012 (Global Lung Initiative; Quanjer et al. 2012 <doi:10.1183/09031936.00080312>), the race-neutral GLI global 2022 (Global Lung Initiative; Bowerman et al. 2023 <doi:10.1164/rccm.202205-0963OC>), the NHANES3 (National Health and Nutrition Examination Survey; Hankinson et al. 1999 <doi:10.1164/ajrccm.159.1.9712108>) and the JRS 2014 (Japanese Respiratory Society; Kubota et al. 2014 <doi:10.1016/j.resinv.2014.03.003>) equations. Also the GLI-2017 diffusing capacity equations <doi:10.1183/13993003.00010-2017> are implemented. Contains user-friendly functions to calculate predicted and LLN (Lower Limit of Normal) values for different spirometric parameters such as FEV1 (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), etc, and to convert absolute spirometry measurements to percent (%) predicted and z-scores.
Translation of the MATLAB program Carb (Nathan and Mauz 2008 <DOI:10.1016/j.radmeas.2007.12.012>; Mauz and Hoffmann 2014) for dose rate modelling for carbonate-rich samples in the context of trapped charged dating (e.g., luminescence dating) applications.