Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality to interact with the FieldClimate API <https://api.fieldclimate.com/v2/docs/>.
This package provides tools to search, access, and format taxonomic information from the Reptile Database (<http://reptile-database.org>) directly within R. Users can retrieve species-level data, distribution, etymology, synonyms, common names, and other relevant information for reptiles. Designed for taxonomists, ecologists, and biodiversity researchers.
Fit and simulate any kind of physiologically-based kinetic ('PBK') models whatever the number of compartments. Moreover, it allows to account for any link between pairs of compartments, as well as any link of each of the compartments with the external medium. Such generic PBK models have today applications in pharmacology (PBPK models) to describe drug effects, in toxicology and ecotoxicology (PBTK models) to describe chemical substance effects. In case of exposure to a parent compound (drug or chemical) the rPBK package allows to consider metabolites, whatever their number and their phase (I, II, ...). Last but not least, package rPBK can also be used for dynamic flux balance analysis (dFBA) to deal with metabolic networks. See also Charles et al. (2022) <doi:10.1101/2022.04.29.490045>.
This package performs wood cell anatomical data analyses on spatially explicit xylem (tracheids) datasets derived from thin sections of woody tissue. The package includes functions for visualisation, detection and alignment of continuous tracheid radial file (defined as rows) and individual tracheid position within an annual ring of coniferous species. This package is designed to be used with elaborate cell output, e.g. as provided with ROXAS (von Arx & Carrer, 2014 <doi:10.1016/j.dendro.2013.12.001>). The package has been validated for Picea abies, Larix Siberica, Pinus cembra and Pinus sylvestris.
Amplification efficiency estimation, statistical analysis, and graphical representation of quantitative real-time PCR (qPCR) data using one or more specified reference genes is handled by rtpcr package. By accounting for amplification efficiency values, rtpcr was developed using a general calculation method described by Ganger et al. (2017) <doi:10.1186/s12859-017-1949-5> and Taylor et al. (2019) <doi:10.1016/j.tibtech.2018.12.002>, covering both the Livak and Pfaffl methods. Based on the experimental conditions, the functions of the rtpcr package use t-test (for experiments with a two-level factor), analysis of variance (ANOVA), analysis of covariance (ANCOVA) or analysis of repeated measure data to analyse the relative expression (Delta Delta Ct method or Delta Ct method). The functions further provide standard errors and confidence intervals for means, apply statistical mean comparisons and present significance.
This package provides functions to allow users to build and analyze design consistent tree and random forest models using survey data from a complex sample design. The tree model algorithm can fit a linear model to survey data in each node obtained by recursively partitioning the data. The splitting variables and selected splits are obtained using a randomized permutation test procedure which adjusted for complex sample design features used to obtain the data. Likewise the model fitting algorithm produces design-consistent coefficients to any specified least squares linear model between the dependent and independent variables used in the end nodes. The main functions return the resulting binary tree or random forest as an object of "rpms" or "rpms_forest" type. The package also provides methods modeling a "boosted" tree or forest model and a tree model for zero-inflated data as well as a number of functions and methods available for use with these object types.
Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a search-and-report strategy. Historically observer performance has dealt with measuring radiologists performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: <https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840>. Online updates to this book, which use the software, are at <https://dpc10ster.github.io/RJafrocQuickStart/>, <https://dpc10ster.github.io/RJafrocRocBook/> and at <https://dpc10ster.github.io/RJafrocFrocBook/>. Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict proper ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, <https://github.com/dpc10ster/WindowsJafroc>. Package functions are organized as follows. Data file related function names are preceded by Df', curve fitting functions by Fit', included data sets by dataset', plotting functions by Plot', significance testing functions by St', sample size related functions by Ss', data simulation functions by Simulate and utility functions by Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single treatment analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed treatment factors and the aim is to determined performance in each treatment factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.
This project is a tool for words edit similarity joins (a.k.a. all-pairs similarity search) under small (< 3) edit distance constraints. It works for Levenshtein/Hamming distances and words from any alphabet. The software was originally developed for joining amino-acid/nucleotide sequences from Adaptive Immune Repertoires, where the number of words is relatively large (10^5-10^6) and the average length of words is relatively small (10-100).
This package provides a portable Shiny tool to explore patient-level electronic health record data and perform chart review in a single integrated framework. This tool supports browsing clinical data in many different formats including multiple versions of the OMOP common data model as well as the MIMIC-III data model. In addition, chart review information is captured and stored securely via the Shiny interface in a REDCap (Research Electronic Data Capture) project using the REDCap API. See the ReviewR website for additional information, documentation, and examples.
This package contains a function to randomize subjects, patients in groups of sequences (treatment sequences). If a blocksize is given, the randomization will be done within blocks. The randomization may be controlled by a Wald-Wolfowitz runs test. Functions to obtain the p-value of that test are included. The package is mainly intended for randomization of bioequivalence studies but may be used also for other clinical crossover studies. Contains two helper functions sequences() and williams() to get the sequences of commonly used designs in BE studies.
Generation of Box-Cox based ROC curves and several aspects of inferences and hypothesis testing. Can be used when inferences for one biomarker (Bantis LE, Nakas CT, Reiser B. (2018)<doi:10.1002/bimj.201700107>) are of interest or when comparisons of two correlated biomarkers (Bantis LE, Nakas CT, Reiser B. (2021)<doi:10.1002/bimj.202000128>) are of interest. Provides inferences and comparisons around the AUC, the Youden index, the sensitivity at a given specificity level (and vice versa), the optimal operating point of the ROC curve (in the Youden sense), and the Youden based cutoff.
This package provides a random-effects stochastic model that allows quick detection of clonal dominance events from clonal tracking data collected in gene therapy studies. Starting from the Ito-type equation describing the dynamics of cells duplication, death and differentiation at clonal level, we first considered its local linear approximation as the base model. The parameters of the base model, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones. Although this assumption makes inference easier, in some cases it can be too restrictive and does not take into account possible scenarios of clonal dominance. Therefore we extended the base model by introducing random effects for the clones. In this extended formulation the dynamic parameters are estimated using a tailor-made expectation maximization algorithm. Further details on the methods can be found in L. Del Core et al., (2022) <doi:10.1101/2022.05.31.494100>.
The Tabular Matrix Problems via Pseudoinverse Estimation (TMPinv) is a two-stage estimation method that reformulates structured table-based systems - such as allocation problems, transaction matrices, and input-output tables - as structured least-squares problems. Based on the Convex Least Squares Programming (CLSP) framework, TMPinv solves systems with row and column constraints, block structure, and optionally reduced dimensionality by (1) constructing a canonical constraint form and applying a pseudoinverse-based projection, followed by (2) a convex-programming refinement stage to improve fit, coherence, and regularization (e.g., via Lasso, Ridge, or Elastic Net).
An R Commander plug-in providing an integrated solution to perform a series of text mining tasks such as importing and cleaning a corpus, and analyses like terms and documents counts, vocabulary tables, terms co-occurrences and documents similarity measures, time series analysis, correspondence analysis and hierarchical clustering. Corpora can be imported from spreadsheet-like files, directories of raw text files, as well as from Dow Jones Factiva', LexisNexis', Europresse and Alceste files.
This package provides functions for reading data sets in different formats for testing machine learning tools are provided. This allows to run a loop over several data sets in their original form, for example if they are downloaded from UCI Machine Learning Repository. The data are not part of the package and have to be downloaded separately.
This package provides a novel numerical algorithm that provides functionality for estimating the exact 95% confidence interval of the location parameter in the random effects model, and is much faster than the naive method. Works best when the number of studies is between 6-20.
This package creates interactive graphs with R'. It joins the data analysis power of R and the visualization libraries of JavaScript in one package.
Systematically transform immunoassay data, evaluate if the data is normally distributed, and pick the right method for cut point determination based on that evaluation. This package can also produce plots that are needed for reports, so data analysis and visualization can be done easily.
This package implements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
Exploration of pharmacometrics data involves both general tools (transformation and plotting) and specific techniques (non-compartmental analysis). This kind of exploration is generally accomplished by utilizing different packages. The purpose of ruminate is to create a shiny interface to make these tools more broadly available while creating reproducible results.
Sundry discrete probability distributions and helper functions.
This package provides a set of functions to build simple GUI controls for R functions. These are built on the tcltk package. Uses could include changing a parameter on a graph by animating it with a slider or a "doublebutton", up to more sophisticated control panels. Some functions for specific graphical tasks, referred to as cartoons', are provided.
This package provides a collection of methods for estimating the basic reproduction number (R0) of infectious diseases. Features a web application to interface with the estimators. Uses the models from: Fisman et al. (2013) <DOI:10.1371/journal.pone.0083622>, Bettencourt and Ribeiro (2008) <DOI:10.1371/journal.pone.0002185>, and White and Pagano (2008) <DOI:10.1002/sim.3136>. Includes datasets for Canadian national and provincial COVID-19 case counts provided by Berry et al. (2021) <DOI:10.1038/s41597-021-00955-2>.
Enables researchers to conduct multivariate statistical analyses of survey data with randomized response technique items from several designs, including mirrored question, forced question, and unrelated question. This includes regression with the randomized response as the outcome and logistic regression with the randomized response item as a predictor. In addition, tools for conducting power analysis for designing randomized response items are included. The package implements methods described in Blair, Imai, and Zhou (2015) Design and Analysis of the Randomized Response Technique, Journal of the American Statistical Association <https://graemeblair.com/papers/randresp.pdf>.