Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The user first provides design vectors n, a and b as well as null (p0) and alternative (p1) benchmark values for the probability of success. The key function "mv.plots.SM()" calculates mean values of exact upper and lower limits based on four different rank ordering methods. These plots form the basis of selecting a rank ordering. The function "inference()" calculates exact limits from a provided realisation and ordering choice. For more information, see "Exact confidence limits after a group sequential single arm binary trial" by Lloyd, C.J. (2020), Statistics in Medicine, Volume 38, 2389-2399, <doi:10.1002/sim.8909>.
It provides functions to bootstrap Credit Curves from market quotes (Credit Default Swap - CDS - spreads) and price Credit Default Swaps - CDS.
Provide the CrossClustering algorithm (Tellaroli et al. (2016) <doi:10.1371/journal.pone.0152333>), which is a partial clustering algorithm that combines the Ward's minimum variance and Complete Linkage algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.
This package provides functions to simplify the process of preparing event and transaction for cohort analysis.
The concaveman function ports the concaveman (<https://github.com/mapbox/concaveman>) library from mapbox'. It computes the concave polygon(s) for one or several set of points.
Several causal effects are measured using least squares regressions and basis function approximations. Backward and forward selection methods based on different criteria are used to select the basis functions.
Simplifies the execution of command line interface (CLI) tools within isolated and reproducible environments. It enables users to effortlessly manage Conda environments, execute command line tools, handle dependencies, and ensure reproducibility in their data analysis workflows.
This package provides functions for the clustering of variables around Latent Variables, for 2-way or 3-way data. Each cluster of variables, which may be defined as a local or directional cluster, is associated with a latent variable. External variables measured on the same observations or/and additional information on the variables can be taken into account. A "noise" cluster or sparse latent variables can also be defined.
Interface to interest and foreign exchange rates published by the Czech National Bank.
Climate stability measures are not formalized in the literature and tools for generating stability metrics from existing data are nascent. This package provides tools for calculating climate stability from raster data encapsulating climate change as a series of time slices. The methods follow Owens and Guralnick <doi:10.17161/bi.v14i0.9786> Biodiversity Informatics.
An implementation of double generalized linear model (DGLM) building with variable selection procedures and handling of interaction terms and other complex situations. We also provide a method of handling convergence issues within the dglm() function. The package offers a simulation function for generating simulated data for testing purposes and utilizes the forward stepwise variable selection procedure in model-building. It also provides a new custom bootstrap function for mean and standard deviation estimation and functions for building crossplots and squareplots from a data set.
Client for CKAN API (<https://ckan.org/>). Includes interface to CKAN APIs for search, list, show for packages, organizations, and resources. In addition, provides an interface to the datastore API.
Estimates the causal decompositions of group disparities developed by Yu and Elwert (2025) <doi:10.1214/24-AOAS1990>. For the nuisance functions of the estimators, we provide both parametric and nonparametric options, as well as manual options in case the default models are not satisfying.
An implementation of the clugen algorithm for generating multidimensional clusters with arbitrary distributions. Each cluster is supported by a line segment, the position, orientation and length of which guide where the respective points are placed. This package is described in Fachada & de Andrade (2023) <doi:10.1016/j.knosys.2023.110836>.
This package provides a framework is provided to develop R packages using Rust <https://www.rust-lang.org/> with minimal overhead, and more wrappers are easily added. Help is provided to use Cargo <https://doc.rust-lang.org/cargo/> in a manner consistent with CRAN policies. Rust code can also be embedded directly in an R script. The package is not official, affiliated with, nor endorsed by the Rust project.
This package implements a semi-parametric GEE estimator accounting for missing data with Inverse-probability weighting (IPW) and for imbalance in covariates with augmentation (AUG). The estimator IPW-AUG-GEE is Doubly robust (DR).
This package provides a collection of useful helper routines developed by students of the Center for Mathematical Research, Stankin, Moscow.
Predict the course of clinical trial with a time-to-event endpoint for both two-arm and single-arm design. Each of the four primary study design parameters (the expected number of observed events, the number of subjects enrolled, the observation time, and the censoring parameter) can be derived analytically given the other three parameters. And the simulation datasets can be generated based on the design settings.
Produce an averaging estimate/prediction by combining all candidate models for partial linear functional additive models, using multi-fold cross-validation criterion. More details can be referred to arXiv e-Prints via <doi:10.48550/arXiv.2105.00966>.
This package provides essential Cleaning Validation functions for complying with pharmaceutical cleaning process regulatory standards. The package includes non-parametric methods to analyze drug active-ingredient residue (DAR), cleaning agent residue (CAR), and microbial colonies (Mic) for non-Poisson distributions. Additionally, Poisson methods are provided for Mic analysis when Mic data follow a Poisson distribution.
This package provides tools for connecting to CHILDES', an open repository for transcripts of parent-child interaction. For more information on the underlying data, see <https://langcog.github.io/childes-db-website/>.
Computes a confidence interval for a specified linear combination of the regression parameters in a linear regression model with iid normal errors with unknown variance when there is uncertain prior information that a distinct specified linear combination of the regression parameters takes a specified number. This confidence interval, found by numerical nonlinear constrained optimization, has the required minimum coverage and utilizes this uncertain prior information through desirable expected length properties. This confidence interval is proposed by Kabaila, P. and Giri, K. (2009) <doi:10.1016/j.jspi.2009.03.018>.
This package provides functions for making contour plots. The contour plot can be created from grid data, a function, or a data set. If non-grid data is given, then a Gaussian process is fit to the data and used to create the contour plot.
Estimate bivariate common mean vector under copula models with known correlation. In the current version, available copulas are the Clayton, Gumbel, Frank, Farlie-Gumbel-Morgenstern (FGM), and normal copulas. See Shih et al. (2019) <doi:10.1080/02331888.2019.1581782> and Shih et al. (2021) <under review> for details under the FGM and general copulas, respectively.