Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of data structures and methods for handling volumetric brain imaging data, with a focus on functional magnetic resonance imaging (fMRI). Provides efficient representations for three-dimensional and four-dimensional neuroimaging data through sparse and dense array implementations, memory-mapped file access for large datasets, and spatial transformation capabilities. Implements methods for image resampling, spatial filtering, region of interest analysis, and connected component labeling. General introduction to fMRI analysis can be found in Poldrack et al. (2024, "Handbook of functional MRI data analysis", <ISBN:9781108795760>).
Box-constrained multiobjective optimization using the elitist non-dominated sorting genetic algorithm - NSGA-II. Fast non-dominated sorting, crowding distance, tournament selection, simulated binary crossover, and polynomial mutation are called in the main program. The methods are described in Deb et al. (2002) <doi:10.1109/4235.996017>.
An estimation procedure for the analysis of nonparametric proportional hazards model (e.g. h(t) = h0(t)exp(b(t)'Z)), providing estimation of b(t) and its pointwise standard errors, and semiparametric proportional hazards model (e.g. h(t) = h0(t)exp(b(t)'Z1 + c*Z2)), providing estimation of b(t), c and their standard errors. More details can be found in Lu Tian et al. (2005) <doi:10.1198/016214504000000845>.
Omics data come in different forms: gene expression, methylation, copy number, protein measurements and more. NCutYX allows clustering of variables, of samples, and both variables and samples (biclustering), while incorporating the dependencies across multiple types of Omics data. (SJ Teran Hidalgo et al (2017), <doi:10.1186/s12864-017-3990-1>).
This package provides a minimal package for downloading data from GitHub repositories of the nflverse project.
This shows how NONMEM(R) software works. NONMEM's classical estimation methods like First Order(FO) approximation', First Order Conditional Estimation(FOCE)', and Laplacian approximation are explained.
This package provides functions to query databases and notes in Notion', using the official REST API. To learn more about the functionality of the Notion API, see <https://developers.notion.com/>.
Retrieves and processes the data exposed by the open NHL API. This includes information on players, teams, games, tournaments, drafts, standings, schedules and other endpoints. A lower-level interface to access the data via URLs directly is also provided.
Build and run spatially explicit agent-based models using only the R platform. NetLogoR follows the same framework as the NetLogo software (Wilensky (1999) <https://www.netlogo.org>) and is a translation in R of the structure and functions of NetLogo'. NetLogoR provides new R classes to define model agents and functions to implement spatially explicit agent-based models in the R environment. This package allows benefiting of the fast and easy coding phase from the highly developed NetLogo framework, coupled with the versatility, power and massive resources of the R software. Examples of two models from the NetLogo software repository (Ants <https://ccl.northwestern.edu/netlogo/models/Ants>) and Wolf-Sheep-Predation (<https://ccl.northwestern.edu/netlogo/models/WolfSheepPredation>), and a third, Butterfly, from Railsback and Grimm (2012) <https://www.railsback-grimm-abm-book.com/>, all written using NetLogoR are available. The NetLogo code of the original version of these models is provided alongside. A programming guide inspired from the NetLogo Programming Guide (<https://docs.netlogo.org/programming.html>) and a dictionary of NetLogo primitives (<https://docs.netlogo.org/dictionary.html>) equivalences are also available. NOTE: To increment time', these functions can use a for loop or can be integrated with a discrete event simulator, such as SpaDES (<https://cran.r-project.org/package=SpaDES>).
Generates functional Magnetic Resonance Imaging (fMRI) time series or 4D data. Some high-level functions are created for fast data generation with only a few arguments and a diversity of functions to define activation and noise. For more advanced users it is possible to use the low-level functions and manipulate the arguments. See Welvaert et al. (2011) <doi:10.18637/jss.v044.i10>.
Estimating the first and second derivatives of a regression function by the method of Wang and Lin (2015) <http://www.jmlr.org/papers/v16/wang15b.html>.
An implementation of the Naive Bayes Classifier (NBC) algorithm used for Verbal Autopsy (VA) built on code from Miasnikof et al (2015) <DOI:10.1186/s12916-015-0521-2>.
This package provides functions for revealing what happens when effect size estimates from previous studies are taken into account when evaluating each new dataset in a study sequence. The analyses can be conducted for cumulative meta-analyses and for Bayesian data analyses. The package contains sample data for a wide selection of research topics. Jointly considering previous findings along with new data is more likely to result in correct conclusions than does the traditional practice of not incorporating previous findings, which often results in a back and forth ping-pong of conclusions when evaluating a sequence of studies. O'Connor & Ermacora (2021, <doi:10.1037/cbs0000259>).
This package provides tools for drawing Statistical Process Control (SPC) charts. This package supports the NHS Making Data Count programme, and allows users to draw XmR charts, use change points and apply rules with summary indicators for when rules are breached.
This package provides a graph visualization engine that emphasizes on aesthetics at the same time providing default parameters that yield out-of-the-box-nice visualizations. The package is built on top of The Grid Graphics Package and seamlessly work with igraph and network objects.
Exploration and analysis of compositional data in the framework of Aitchison (1986, ISBN: 978-94-010-8324-9). This package provides tools for chemical fingerprinting and source tracking of ancient materials.
Perform a stratified weighted log-rank test in a randomized controlled trial. Tests can be visualized as a difference in average score on the two treatment arms. These methods are described in Magirr and Burman (2018) <doi:10.48550/arXiv.1807.11097>, Magirr (2020) <doi:10.48550/arXiv.2007.04767>, and Magirr and Jimenez (2022) <doi:10.48550/arXiv.2201.10445>.
Network meta-analysis tools based on contrast-based approach using the multivariate meta-analysis and meta-regression models (Noma et al. (2025) <doi:10.1101/2025.09.15.25335823>). Comprehensive analysis tools for network meta-analysis and meta-regression (e.g., synthesis analysis, ranking analysis, and creating league table) are available through simple commands. For inconsistency assessment, the local and global inconsistency tests based on the Higgins design-by-treatment interaction model are available. In addition, the side-splitting methods and Jackson's random inconsistency model can be applied. Standard graphical tools for network meta-analysis, including network plots, ranked forest plots, and transitivity analyses, are also provided. For the synthesis analyses, the Noma-Hamura's improved REML (restricted maximum likelihood)-based methods (Noma et al. (2023) <doi:10.1002/jrsm.1652> <doi:10.1002/jrsm.1651>) are adopted as the default methods.
Get or set UNIX priority (niceness) of running R process.
This package provides a multi-core R package that contains a set of tools based on copula graphical models for accomplishing the three interrelated goals in genetics and genomics in an unified way: (1) linkage map construction, (2) constructing linkage disequilibrium networks, and (3) exploring high-dimensional genotype-phenotype network and genotype- phenotype-environment interactions networks. The netgwas package can deal with biparental inbreeding and outbreeding species with any ploidy level, namely diploid (2 sets of chromosomes), triploid (3 sets of chromosomes), tetraploid (4 sets of chromosomes) and so on. We target on high-dimensional data where number of variables p is considerably larger than number of sample sizes (p >> n). The computations is memory-optimized using the sparse matrix output. The netgwas implements the methodological developments in Behrouzi and Wit (2017) <doi:10.1111/rssc.12287> and Behrouzi and Wit (2017) <doi:10.1093/bioinformatics/bty777>.
Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Provide additional resources to facilitate the automation of the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment. The additional resources include determining the identity and ordering of the packages to process when updating an imported package.
Estimates the relative transmission probabilities between cases in an infectious disease outbreak or cluster using naive Bayes. Included are various functions to use these probabilities to estimate transmission parameters such as the generation/serial interval and reproductive number as well as finding the contribution of covariates to the probabilities and visualizing results. The ideal use is for an infectious disease dataset with metadata on the majority of cases but more informative data such as contact tracing or pathogen whole genome sequencing on only a subset of cases. For a detailed description of the methods see Leavitt et al. (2020) <doi:10.1093/ije/dyaa031>.
This package provides functions to produce advanced ascii graphics, directly to the terminal window. This package utilizes the txtplot() function from the txtplot package, to produce text-based histograms, empirical cumulative distribution function plots, scatterplots with fitted and regression lines, quantile plots, density plots, image plots, and contour plots.
Download data from the Northern Ireland Statistics and Research Agency (NISRA) data portal, accessed at <https://data.nisra.gov.uk>. NISRA is a government agency and the principal source of official statistics and social research on Northern Ireland.