Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides essential Cleaning Validation functions for complying with pharmaceutical cleaning process regulatory standards. The package includes non-parametric methods to analyze drug active-ingredient residue (DAR), cleaning agent residue (CAR), and microbial colonies (Mic) for non-Poisson distributions. Additionally, Poisson methods are provided for Mic analysis when Mic data follow a Poisson distribution.
We propose a method to estimate the probability of an undetected case of COVID-19 in a defined setting, when a given number of people have been exposed, with a given pretest probability of having COVID-19 as a result of that exposure. Since we are interested in undetected COVID-19, we assume no person has developed symptoms (which would warrant further investigation) and that everyone was tested on a given day, and all tested negative.
Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.
API to the database of CRAN package downloads from the RStudio CRAN mirror'. The database itself is at <http://cranlogs.r-pkg.org>, see <https://github.com/r-hub/cranlogs.app> for the raw API'.
The COSSO regularization method automatically estimates and selects important function components by a soft-thresholding penalty in the context of smoothing spline ANOVA models. Implemented models include mean regression, quantile regression, logistic regression and the Cox regression models.
This package implements a class of univariate and multivariate spatio-temporal generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson, but for some models only the binomial and Poisson data likelihoods are available. The spatio-temporal autocorrelation is modelled by random effects, which are assigned conditional autoregressive (CAR) style prior distributions. A number of different random effects structures are available, including models similar to Rushworth et al. (2014) <doi:10.1016/j.sste.2014.05.001>. Full details are given in the vignette accompanying this package. The creation and development of this package was supported by the Engineering and Physical Sciences Research Council (EPSRC) grants EP/J017442/1 and EP/T004878/1 and the Medical Research Council (MRC) grant MR/L022184/1.
Providing a cluster allocation for n samples, either with an $n \times p$ data matrix or an $n \times n$ distance matrix, a bootstrap procedure is performed. The proportion of bootstrap replicates where a pair of samples cluster in the same cluster indicates who tightly the samples in a particular cluster clusters together.
This package provides functions to access data from public RESTful APIs including FINDIC API', REST Countries API', World Bank API', and Nager.Date', retrieving real-time or historical data related to Chile such as financial indicators, holidays, international demographic and geopolitical indicators, and more. Additionally, the package includes curated datasets related to Chile, covering topics such as human rights violations during the Pinochet regime, electoral data, census samples, health surveys, seismic events, territorial codes, and environmental measurements. The package supports research and analysis focused on Chile by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: FINDIC <https://findic.cl/>, REST Countries <https://restcountries.com/>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and Nager.Date <https://date.nager.at/Api>.
Learning the structure of graphical models from datasets with thousands of variables. More information about the research papers detailing the theory behind Chordalysis is available at <http://www.francois-petitjean.com/Research> (KDD 2016, SDM 2015, ICDM 2014, ICDM 2013). The R package development site is <https://github.com/HerrmannM/Monash-ChoR>.
Seek the significant cutoff value for a continuous variable, which will be transformed into a classification, for linear regression, logistic regression, logrank analysis and cox regression. First of all, all combinations will be gotten by combn() function. Then n.per argument, abbreviated of total number percentage, will be used to remove the combination of smaller data group. In logistic, Cox regression and logrank analysis, we will also use p.per argument, patient percentage, to filter the lower proportion of patients in each group. Finally, p value in regression results will be used to get the significant combinations and output relevant parameters. In this package, there is no limit to the number of cutoff points, which can be 1, 2, 3 or more. Still, we provide 2 methods, typical Bonferroni and Duglas G (1994) <doi: 10.1093/jnci/86.11.829>, to adjust the p value, Missing values will be deleted by na.omit() function before analysis.
Calculate the R-squared, aka explained randomness, based on the partial likelihood ratio statistic under the Cox Proportional Hazard model [J O'Quigley, R Xu, J Stare (2005) <doi:10.1002/sim.1946>].
This package provides access to the COLOURlovers <https://www.colourlovers.com/> API, which offers color inspiration and color palettes.
This package implements the adaptive designs for integrated phase I/II trials of drug combinations via continual reassessment method (CRM) to evaluate toxicity and efficacy simultaneously for each enrolled patient cohort based on Bayesian inference. It supports patients assignment guidance in a single trial using current enrolled data, as well as conducting extensive simulation studies to evaluate operating characteristics before the trial starts. It includes various link functions such as empiric, one-parameter logistic, two-parameter logistic, and hyperbolic tangent, as well as considering multiple prior distributions of the parameters like normal distribution, gamma distribution and exponential distribution to accommodate diverse clinical scenarios. Method using Bayesian framework with empiric link function is described in: Wages and Conaway (2014) <doi:10.1002/sim.6097>.
This package provides a collection of utilities for the statistical analysis of multivariate circular data using distributions based on Multivariate Nonnegative Trigonometric Sums (MNNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, and more.
Proposed by Harrell, the C index or concordance C, is considered an overall measure of discrimination in survival analysis between a survival outcome that is possibly right censored and a predictive-score variable, which can represent a measured biomarker or a composite-score output from an algorithm that combines multiple biomarkers. This package aims to statistically compare two C indices with right-censored survival outcome, which commonly arise from a paired design and thus resulting two correlated C indices.
Expectation-Maximization (EM) algorithm for point estimation and variance estimation to the nonparametric maximum likelihood estimator (NPMLE) for logistic-Cox cure-rate model with left truncation and right- censoring. See Hou, Chambers and Xu (2017) <doi:10.1007/s10985-017-9415-2>.
Identification and visualization of groups of closely spaced mutations in the DNA sequence of cancer genome. The extremely mutated zones are searched in the symmetric dissimilarity matrix using the anti-Robinson matrix properties. Different data sets are obtained to describe and plot the clustered mutations information.
Computerized tomography (CT) can be used to assess certain wood properties when wood disks or logs are scanned. Wood density profiles (i.e. variations of wood density from pith to bark) can yield important information used for studies in forest resource assessment, wood quality and dendrochronology studies. The first step consists in transforming grey values from the scan images to density values. The packages then proposes a unique method to automatically locate the pith by combining an adapted Hough Transform method and a one-dimensional edge detector. Tree ring profiles (average ring density, earlywood and latewood density, ring width and percent latewood for each ring) are then obtained.
Generate cohorts and subsets using an Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) Database. Cohorts are defined using CIRCE (<https://github.com/ohdsi/circe-be>) or SQL compatible with SqlRender (<https://github.com/OHDSI/SqlRender>).
The level-dependent cross-validation method is implemented for the selection of thresholding value in wavelet shrinkage. This procedure is implemented by coupling a conventional cross validation with an imputation method due to a limitation of data length, a power of 2. It can be easily applied to classical leave-one-out and k-fold cross validation. Since the procedure is computationally fast, a level-dependent cross validation can be performed for wavelet shrinkage of various data such as a data with correlated errors.
The implemented functions allow the query, download, and import of remotely-stored and version-controlled data items. The inherent meta-database maps data files and import code to programming classes and allows access to these items via files deposited in public repositories. The purpose of the project is to increase reproducibility and establish version tracking of results from (paleo)environmental/ecological research.
This package provides a collection of functions to calculate Composite Indicators methods, focusing, in particular, on the normalisation and weighting-aggregation steps, as described in OECD Handbook on constructing composite indicators: methodology and user guide, 2008, Vidoli and Fusco and Mazziotta <doi:10.1007/s11205-014-0710-y>, Mazziotta and Pareto (2016) <doi:10.1007/s11205-015-0998-2>, Van Puyenbroeck and Rogge <doi:10.1016/j.ejor.2016.07.038> and other authors.
This package provides a wrapper for the EZC3D library to work with C3D motion capture data.
This package provides functions for constructing and evaluating CUSUM charts and RA-CUSUM charts with focus on false signal probability.