Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The goal of readsdr is to bridge the design capabilities from specialised System Dynamics software with the powerful numerical tools offered by R libraries. The package accomplishes this goal by parsing XMILE files ('Vensim and Stella') models into R objects to construct networks (graph theory); ODE functions for Stan'; and inputs to simulate via deSolve as described in Duggan (2016) <doi:10.1007/978-3-319-34043-2>.
Integrates population dynamics and dispersal into a mechanistic virtual species simulator. The package can be used to study the effects of environmental change on population growth and range shifts. It allows for simple and straightforward definition of population dynamics (including positive density dependence), extensive possibilities for defining dispersal kernels, and the ability to generate virtual ecologist data. Learn more about the rangr at <https://docs.ropensci.org/rangr/>. This work was supported by the National Science Centre, Poland, grant no. 2018/29/B/NZ8/00066 and the PoznaÅ Supercomputing and Networking Centre (grant no. pl0090-01).
Generic functions to analyze the distribution of two continuous variables: conf2d to calculate a smooth empirical confidence region, and freq2d to calculate a frequency distribution.
This function conducts variation partitioning and hierarchical partitioning to calculate the unique, shared (referred as to "common") and individual contributions of each predictor (or matrix) towards explained variation (R-square and adjusted R-square) on canonical analysis (RDA,CCA and db-RDA), applying the algorithm of Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13: 782-788 <DOI:10.1111/2041-210X.13800>.
Fast and efficient computation of rolling and expanding statistics for time-series data.
Random univariate and multivariate finite mixture model generation, estimation, clustering, latent class analysis and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or circular von Mises parametric families.
An interface to the BaM (Bayesian Modeling) engine, a Fortran'-based executable aimed at estimating a model with a Bayesian approach and using it for prediction, with a particular focus on uncertainty quantification. Classes are defined for the various building blocks of BaM inference (model, data, error models, Markov Chain Monte Carlo (MCMC) samplers, predictions). The typical usage is as follows: (1) specify the model to be estimated; (2) specify the inference setting (dataset, parameters, error models...); (3) perform Bayesian-MCMC inference; (4) read, analyse and use MCMC samples; (5) perform prediction experiments. Technical details are available (in French) in Renard (2017) <https://hal.science/hal-02606929v1>. Examples of applications include Mansanarez et al. (2019) <doi:10.1029/2018WR023389>, Le Coz et al. (2021) <doi:10.1002/hyp.14169>, Perret et al. (2021) <doi:10.1029/2020WR027745>, Darienzo et al. (2021) <doi:10.1029/2020WR028607> and Perret et al. (2023) <doi:10.1061/JHEND8.HYENG-13101>.
Algorithms for estimating robustly the parameters of a Gaussian, Student, or Laplace Mixture Model.
This package contains tools for reading and writing data from or to files in the formats: akterm, dmna, Scintec Format-1, and Campbell Scientific TOA5.
This package provides a collection of several utility functions related to resolvable and affine resolvable Partially Balanced Incomplete Block Designs (PBIBDs), have been developed. In the class of resolvable designs, affine resolvable designs are said to be optimal, Bailey (1995) <doi:10.2307/2337638>. Here, the package contains three functions to generate and study the characterization properties of these designs. Developed functions are named as PBIBD1(), PBIBD2() and PBIBD3(), in which first two functions are used to generate two new series of affine resolvable PBIBDs and last one is used to generate a new series of resolvable PBIBDs, respectively. In addition, these functions can also be used to generate design parameters (v, b, r and k), canonical efficiency factors, variance factor between associates and average variance factors of the generated designs. Here v is the number of treatments, b (= b1 + b2, in case of non-proper design) is the number of blocks, r is the number of replications and k (= k1 + k2; k1 is the size of b1 and k2 is the size of b2) is the block size.
An interface to the powerful and fairly complete computer algebra system Maxima'. It can be used to start and control Maxima from within R by entering Maxima commands. Results from Maxima can be parsed and evaluated in R. It facilitates outputting results from Maxima in LaTeX and MathML'. 2D and 3D plots can be displayed directly. This package also registers a knitr'-engine enabling Maxima code chunks to be written in RMarkdown documents.
This package provides a collection of data sets relating to ADHD (Attention Deficit Hyperactivity Disorder) which have been sourced from other packages on CRAN or from publications on other websites such as Kaggle <http://www.kaggle.com/>.The package also includes some simple functions for analysing data sets. The data sets and descriptions of the data sets may differ from what is on CRAN or other source websites. The aim of this package is to bring together data sets from a variety of ADHD research publications. This package would be useful for those interested in finding out what research has been done on the topic of ADHD, or those interested in comparing the results from different existing works. I started this project because I wanted to put together a collection of the data sets relevant to ADHD research, which I have a personal interest in. This work was conducted with the support of my mentor within the Global Talent Mentoring platform. <https://globaltalentmentoring.org/>.
An R interface for libeemd (Luukko, Helske, Räsänen, 2016) <doi:10.1007/s00180-015-0603-9>, a C library of highly efficient parallelizable functions for performing the ensemble empirical mode decomposition (EEMD), its complete variant (CEEMDAN), the regular empirical mode decomposition (EMD), and bivariate EMD (BEMD). Due to the possible portability issues CRAN version no longer supports OpenMP, but you can install OpenMP-supported version from GitHub: <https://github.com/helske/Rlibeemd/>.
Tests linear regressions for significance reversal through leave-one(multiple)-out.
R Commander plug-in for repeated-measures and mixed-design ('split-plot') ANOVA. It adds a new menu entry for repeated measures that allows to deal with up to three within-subject factors and optionally with one or several between-subject factors. It also provides supplementary options to oneWayAnova() and multiWayAnova() functions, such as choice of ANOVA type, display of effect sizes and post hoc analysis for multiWayAnova().
This package provides a S4 class has been created such that complex operations can be executed on each cell of a raster map. The raster of objects contains a raster map with the addition of a list of generic objects: one object for each raster cells. It allows to write few lines of R code for complex map algebra. Two environmental applications about frequency analysis of raster map of precipitation and creation of a raster map of soil water retention curves have been presented.
Since the early 1970s eyewitness testimony researchers have recognised the importance of estimating properties such as lineup bias (is the lineup biased against the suspect, leading to a rate of choosing higher than one would expect by chance?), and lineup size (how many reasonable choices are in fact available to the witness? A lineup is supposed to consist of a suspect and a number of additional members, or foils, whom a poor-quality witness might mistake for the perpetrator). Lineup measures are descriptive, in the first instance, but since the earliest articles in the literature researchers have recognised the importance of reasoning inferentially about them. This package contains functions to compute various properties of laboratory or police lineups, and is intended for use by researchers in forensic psychology and/or eyewitness testimony research. Among others, the r4lineups package includes functions for calculating lineup proportion, functional size, various estimates of effective size, diagnosticity ratio, homogeneity of the diagnosticity ratio, ROC curves for confidence x accuracy data and the degree of similarity of faces in a lineup.
The header-only C++ template library FastAD for automatic differentiation <https://github.com/JamesYang007/FastAD> is provided by this package, along with a few illustrative examples that can all be called from R.
This reduced piecewise exponential survival software implements the likelihood ratio test and backward elimination procedure in Han, Schell, and Kim (2012 <doi:10.1080/19466315.2012.698945>, 2014 <doi:10.1002/sim.5915>), and Han et al. (2016 <doi:10.1111/biom.12590>). Inputs to the program can be either times when events/censoring occur or the vectors of total time on test and the number of events. Outputs of the programs are times and the corresponding p-values in the backward elimination. Details about the model and implementation are given in Han et al. 2014. This program can run in R version 3.2.2 and above.
The provided benchmark suite enables the automated evaluation and comparison of any existing and novel indirect method for reference interval ('RI') estimation in a systematic way. Indirect methods take routine measurements of diagnostic tests, containing pathological and non-pathological samples as input and use sophisticated statistical methods to derive a model describing the distribution of the non-pathological samples, which can then be used to derive reference intervals. The benchmark suite contains 5,760 simulated test sets with varying difficulty. To include any indirect method, a custom wrapper function needs to be provided. The package offers functions for generating the test sets, executing the indirect method and evaluating the results. See ?RIbench or vignette("RIbench_package") for a more comprehensive description of the features. A detailed description and application is described in Ammer T., Schuetzenmeister A., Prokosch H.-U., Zierk J., Rank C.M., Rauh M. "RIbench: A Proposed Benchmark for the Standardized Evaluation of Indirect Methods for Reference Interval Estimation". Clinical Chemistry (2022) <doi:10.1093/clinchem/hvac142>.
This package provides a client library for The Guardian (https://www.guardian.com/) and their API, this package allows users to search for Guardian articles and retrieve both the content and metadata.
Standard and extensible Eddy-Covariance data post-processing (Wutzler et al. (2018) <doi:10.5194/bg-15-5015-2018>) includes uStar-filtering, gap-filling, and flux-partitioning. The Eddy-Covariance (EC) micrometeorological technique quantifies continuous exchange fluxes of gases, energy, and momentum between an ecosystem and the atmosphere. It is important for understanding ecosystem dynamics and upscaling exchange fluxes. (Aubinet et al. (2012) <doi:10.1007/978-94-007-2351-1>). This package inputs pre-processed (half-)hourly data and supports further processing. First, a quality-check and filtering is performed based on the relationship between measured flux and friction velocity (uStar) to discard biased data (Papale et al. (2006) <doi:10.5194/bg-3-571-2006>). Second, gaps in the data are filled based on information from environmental conditions (Reichstein et al. (2005) <doi:10.1111/j.1365-2486.2005.001002.x>). Third, the net flux of carbon dioxide is partitioned into its gross fluxes in and out of the ecosystem by night-time based and day-time based approaches (Lasslop et al. (2010) <doi:10.1111/j.1365-2486.2009.02041.x>).
Gene-environment (GÃ E) interactions have important implications to elucidate the etiology of complex diseases beyond the main genetic and environmental effects. Outliers and data contamination in disease phenotypes of GÃ E studies have been commonly encountered, leading to the development of a broad spectrum of robust penalization methods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in existing studies. We develop a robust Bayesian variable selection method for GÃ E interaction studies. The proposed Bayesian method can effectively accommodate heavy-tailed errors and outliers in the response variable while conducting variable selection by accounting for structural sparsity. In particular, the spike-and-slab priors have been imposed on both individual and group levels to identify important main and interaction effects. An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.
This package provides tools for working with rotational data, including simulation from the most commonly used distributions on SO(3), methods for different Bayes, mean and median type estimators for the central orientation of a sample, confidence/credible regions for the central orientation based on those estimators and a novel visualization technique for rotation data. Most recently, functions to identify potentially discordant (outlying) values have been added. References: Bingham, Melissa A. and Nordman, Dan J. and Vardeman, Steve B. (2009), Bingham, Melissa A and Vardeman, Stephen B and Nordman, Daniel J (2009), Bingham, Melissa A and Nordman, Daniel J and Vardeman, Stephen B (2010), Leon, C.A. and Masse, J.C. and Rivest, L.P. (2006), Hartley, R and Aftab, K and Trumpf, J. (2011), Stanfill, Bryan and Genschel, Ulrike and Hofmann, Heike (2013), Maonton, Jonathan (2004), Mardia, KV and Jupp, PE (2000, ISBN:9780471953333), Rancourt, D. and Rivest, L.P. and Asselin, J. (2000), Chang, Ted and Rivest, Louis-Paul (2001), Fisher, Nicholas I. (1996, ISBN:0521568900).