Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The cfToolsData package supplies the data for the cfTools package. It contains two pre-trained deep neural network (DNN) models for the cfSort function. Additionally, it includes the shape parameters of beta distribution characterizing methylation markers associated with four tumor types for the CancerDetector function, as well as the parameters characterizing methylation markers specific to 29 primary human tissue types for the cfDeconvolve function.
This package is a tool to predict the power of CyTOF experiments in the context of differential state analyses. The package provides a shiny app with two options to predict the power of an experiment: i. generation of in-sicilico CyTOF data, using users input ii. browsing in a grid of parameters for which the power was already precomputed.
cogeqc aims to facilitate systematic quality checks on standard comparative genomics analyses to help researchers detect issues and select the most suitable parameters for each data set. cogeqc can be used to asses: i. genome assembly and annotation quality with BUSCOs and comparisons of statistics with publicly available genomes on the NCBI; ii. orthogroup inference using a protein domain-based approach and; iii. synteny detection using synteny network properties. There are also data visualization functions to explore QC summary statistics.
Dropout events make the lowly expressed genes indistinguishable from true zero expression and different than the low expression present in cells of the same type. This issue makes any subsequent downstream analysis difficult. ccImpute is an imputation algorithm that uses cell similarity established by consensus clustering to impute the most probable dropout events in the scRNA-seq datasets. ccImpute demonstrated performance which exceeds the performance of existing imputation approaches while introducing the least amount of new noise as measured by clustering performance characteristics on datasets with known cell identities.
This package provides a package containing an environment representing the Canine_2.cdf file.
Annotation of peaklists generated by xcms, rule based annotation of isotopes and adducts, isotope validation, EIC correlation based tagging of unknown adducts and fragments.
Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies.
This package implements a Naive Bayes classifier for accurately differentiating true polyadenylation sites (pA sites) from oligo(dT)-mediated 3 end sequencing such as PAS-Seq, PolyA-Seq and RNA-Seq by filtering out false polyadenylation sites, mainly due to oligo(dT)-mediated internal priming during reverse transcription. The classifer is highly accurate and outperforms other heuristic methods.
colorectal cancer mRNA and miRNA on 18 cell lines.
This package provides a normalization and copy number variation calling procedure for whole exome DNA sequencing data. CODEX relies on the availability of multiple samples processed using the same sequencing pipeline for normalization, and does not require matched controls. The normalization model in CODEX includes terms that specifically remove biases due to GC content, exon length and targeting and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data.
Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed.
Using bayesian methods to estimate correlation matrices assuming that they can be written and estimated as block diagonal matrices. These block diagonal matrices are determined using shrinkage parameters that values below this parameter to zero.
Statistical methods for multiple testing with covariate information. Traditional multiple testing methods only consider a list of test statistics, such as p-values. Our methods incorporate the auxiliary information, such as the lengths of gene coding regions or the minor allele frequencies of SNPs, to improve power.
This package implements the cn.FARMS algorithm for copy number variation (CNV) analysis. cn.FARMS allows to analyze the most common Affymetrix (250K-SNP6.0) array types, supports high-performance computing using snow and ff.
Affymetrix Affymetrix Chicken Array annotation data (chip chicken) assembled using data from public repositories.
Affymetrix Affymetrix Celegans Array annotation data (chip celegans) assembled using data from public repositories.
This package provides basic functions for analyzing shallow whole-genome sequencing (~0.3X or more) of cell-free DNA (cfDNA). The package basically extracts the length of cfDNA fragments and aids the vistualization of fragment-length information. The package also extract fragment-length information per non-overlapping fixed-sized bins and used it for calculating ctDNA estimation score (CES).
ChIPXpress takes as input predicted TF bound genes from ChIPx data and uses a corresponding database of gene expression profiles downloaded from NCBI GEO to rank the TF bound targets in order of which gene is most likely to be functional TF target.
An R package that offers a workflow to predict condition-specific enhancers from ChIP-seq data. The prediction of regulatory units is done in four main steps: Step 1 - the normalization of the ChIP-seq counts. Step 2 - the prediction of active enhancers binwise on the whole genome. Step 3 - the condition-specific clustering of the putative active enhancers. Step 4 - the detection of possible target genes of the condition-specific clusters using RNA-seq counts.
An upgraded causal reasoning tool from Melas et al in R with updated assignments of TFs weights from PROGENy scores. Optimization parameters can be freely adjusted and multiple solutions can be obtained and aggregated.
CRImage provides functionality to process and analyze images, in particular to classify cells in biological images. Furthermore, in the context of tumor images, it provides functionality to calculate tumour cellularity.
This package implements a low dimensional visualization of a set of cytometry samples, in order to visually assess the distances between them. This, in turn, can greatly help the user to identify quality issues like batch effects or outlier samples, and/or check the presence of potential sample clusters that might align with the exeprimental design. The CytoMDS algorithm combines, on the one hand, the concept of Earth Mover's Distance (EMD), a.k.a. Wasserstein metric and, on the other hand, the Multi Dimensional Scaling (MDS) algorithm for the low dimensional projection. Also, the package provides some diagnostic tools for both checking the quality of the MDS projection, as well as tools to help with the interpretation of the axes of the projection.
This package provides methods for differential abundance analysis in high-dimensional cytometry data when a covariate is subject to right censoring (e.g. survival time) based on multiple imputation and generalized linear mixed models.
This R package supports interactive visualization of multi-channel images and segmentation masks generated by imaging mass cytometry and other highly multiplexed imaging techniques using shiny. The cytoviewer interface is divided into image-level (Composite and Channels) and cell-level visualization (Masks). It allows users to overlay individual images with segmentation masks, integrates well with SingleCellExperiment and SpatialExperiment objects for metadata visualization and supports image downloads.