Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements functions for multi-class discriminant analysis using binary predictors, for corresponding variable selection, and for dichotomizing continuous data.
This package contains a variety of methods to generate typical causal inference estimates using Bayesian Additive Regression Trees (BART) as the underlying regression model (Hill (2012) <doi:10.1198/jcgs.2010.08162>).
This package provides a toolbox for analyzing and simulating large networks based on hierarchical exponential-family random graph models (HERGMs).'bigergm implements the estimation for large networks efficiently building on the lighthergm and hergm packages. Moreover, the package contains tools for simulating networks with local dependence to assess the goodness-of-fit.
Computes Bayesian A- and D-optimal block designs under the linear mixed effects model settings using block/array exchange algorithm of Debusho, Gemechu and Haines (2018) <doi:10.1080/03610918.2018.1429617> and Gemechu, Debusho and Haines (2025) <doi:10.5539/ijsp.v14n1p50> where the interest is in a comparison of all possible elementary treatment contrasts. The package also provides an optional method of using the graphical user interface (GUI) R package tcltk to ensure that it is user friendly.
This package provides functions to allow you to easily pass command-line arguments into R, and functions to aid in submitting your R code in parallel on a cluster and joining the results afterward (e.g. multiple parameter values for simulations running in parallel, splitting up a permutation test in parallel, etc.). See `parseCommandArgs(...) for the main example of how to use this package.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
We use a Bayesian approach to run individual patient data meta-analysis and network meta-analysis using JAGS'. The methods incorporate shrinkage methods and calculate patient-specific treatment effects as described in Seo et al. (2021) <DOI:10.1002/sim.8859>. This package also includes user-friendly functions that impute missing data in an individual patient data using mice-related packages.
Perform mediation analysis in the presence of high-dimensional mediators based on the potential outcome framework. Bayesian Mediation Analysis (BAMA), developed by Song et al (2019) <doi:10.1111/biom.13189> and Song et al (2020) <doi:10.48550/arXiv.2009.11409>, relies on two Bayesian sparse linear mixed models to simultaneously analyze a relatively large number of mediators for a continuous exposure and outcome assuming a small number of mediators are truly active. This sparsity assumption also allows the extension of univariate mediator analysis by casting the identification of active mediators as a variable selection problem and applying Bayesian methods with continuous shrinkage priors on the effects.
Simultaneous clustering of rows and columns, usually designated by biclustering, co-clustering or block clustering, is an important technique in two way data analysis. It consists of estimating a mixture model which takes into account the block clustering problem on both the individual and variables sets. The blockcluster package provides a bridge between the C++ core library build on top of the STK++ library, and the R statistical computing environment. This package allows to co-cluster binary <doi:10.1016/j.csda.2007.09.007>, contingency <doi:10.1080/03610920903140197>, continuous <doi:10.1007/s11634-013-0161-3> and categorical data-sets <doi:10.1007/s11222-014-9472-2>. It also provides utility functions to visualize the results. This package may be useful for various applications in fields of Data mining, Information retrieval, Biology, computer vision and many more. More information about the project and comprehensive tutorial can be found on the link mentioned in URL.
This package provides functions for performing the Bayesian bootstrap as introduced by Rubin (1981) <doi:10.1214/aos/1176345338> and for summarizing the result. The implementation can handle both summary statistics that works on a weighted version of the data and summary statistics that works on a resampled data set.
Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. BFAST can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. BFAST monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. BFAST monitor provides functionality to detect disturbance in near real-time based on BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. BFAST Lite approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).
Calculates the Boltzmann entropy of a landscape gradient. This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values.
Adjusting the bias due to residual confounding (often called treatment selection bias) in estimating the treatment effect in a proportional hazard model, as described in Williamson et al. (2022) <doi:10.1158/1078-0432.ccr-21-2468>.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is a command-line tool. This package provides a way to call BEAST2 from an R function call.
Functional gradient descent algorithm for a variety of convex and non-convex loss functions, for both classical and robust regression and classification problems. See Wang (2011) <doi:10.2202/1557-4679.1304>, Wang (2012) <doi:10.3414/ME11-02-0020>, Wang (2018) <doi:10.1080/10618600.2018.1424635>, Wang (2018) <doi:10.1214/18-EJS1404>.
Computes appropriate confidence intervals for the likelihood ratio tests commonly used in medicine/epidemiology, using the method of Marill et al. (2015) <doi:10.1177/0962280215592907>. It is particularly useful when the sensitivity or specificity in the sample is 100%. Note that this does not perform the test on nested models--for that, see epicalc::lrtest'.
Fitting, cross-validating, and predicting with Bayesian Knowledge Tracing (BKT) models. It is designed for analyzing educational datasets to trace student knowledge over time. The package includes functions for fitting BKT models, evaluating their performance using various metrics, and making predictions on new data. It provides the similar functionality as the Python package pyBKT authored by Zachary A. Pardos (zp@berkeley.edu) at <https://github.com/CAHLR/pyBKT>.
Assume that a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. The package infers the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters per time-series by MCMC sampling. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence, but also available is the Poisson distribution. See Papastamoulis et al (2019) <doi:10.1515/ijb-2018-0052> for a detailed presentation of the method.
This package provides tools for Dating Business Cycles using Harding-Pagan (Quarterly Bry-Boschan) method and various plotting features.
This package provides a Bayesian framework to estimate the Student's t-distribution's degrees of freedom is developed. Markov Chain Monte Carlo sampling routines are developed as in <doi:10.3390/axioms11090462> to sample from the posterior distribution of the degrees of freedom. A random walk Metropolis algorithm is used for sampling when Jeffrey's and Gamma priors are endowed upon the degrees of freedom. In addition, the Metropolis-adjusted Langevin algorithm for sampling is used under the Jeffrey's prior specification. The Log-normal prior over the degrees of freedom is posed as a viable choice with comparable performance in simulations and real-data application, against other prior choices, where an Elliptical Slice Sampler is used to sample from the concerned posterior.
This package provides a fast integrative genetic association test for rare diseases based on a model for disease status given allele counts at rare variant sites. Probability of association, mode of inheritance and probability of pathogenicity for individual variants are all inferred in a Bayesian framework - A Fast Association Test for Identifying Pathogenic Variants Involved in Rare Diseases', Greene et al 2017 <doi:10.1016/j.ajhg.2017.05.015>.
Get a current financial year, start of current month, End of current month, start of financial year and end of it. Allow for offset from the date.
This package provides the functions for Brunner-Munzel test and permuted Brunner-Munzel test, which enable to use formula, matrix, and table as argument. These functions are based on Brunner and Munzel (2000) <doi:10.1002/(SICI)1521-4036(200001)42:1%3C17::AID-BIMJ17%3E3.0.CO;2-U> and Neubert and Brunner (2007) <doi:10.1016/j.csda.2006.05.024>, and are written with FORTRAN.
Allows the user to generate bootstrap cards within R markdown documents. Intended for use in conjunction with R markdown HTML outputs and other formats that support the bootstrap 4 library.