Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of the NetCutter algorithm described in Müller and Mancuso (2008) <doi:10.1371/journal.pone.0003178>. The package identifies co-occurring terms in a list of containers. For example, it may be used to detect genes that co-occur across genomes.
Training of neural networks using backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.
Classify occurrence records based on confidence levels of species identification. In addition, implement tools to filter occurrences inside grid cells and to manually check for possibles errors with an interactive shiny application.
This package implements a method that builds the coefficients of a polynomial model that performs almost equivalently as a given neural network (densely connected). This is achieved using Taylor expansion at the activation functions. The obtained polynomial coefficients can be used to explain features (and their interactions) importance in the neural network, therefore working as a tool for interpretability or eXplainable Artificial Intelligence (XAI). See Morala et al. 2021 <doi:10.1016/j.neunet.2021.04.036>, and 2023 <doi:10.1109/TNNLS.2023.3330328>.
This package provides functions for nominal data mining based on bipartite graphs, which build a pipeline for analysis and missing values imputation. Methods are mainly from the paper: Jafari, Mohieddin, et al. (2021) <doi:10.1101/2021.03.18.436040>, some new ones are also included.
This package provides several direct search optimization algorithms based on the simplex method. The provided algorithms are direct search algorithms, i.e. algorithms which do not use the derivative of the cost function. They are based on the update of a simplex. The following algorithms are available: the fixed shape simplex method of Spendley, Hext and Himsworth (unconstrained optimization with a fixed shape simplex, 1962) <doi:10.1080/00401706.1962.10490033>, the variable shape simplex method of Nelder and Mead (unconstrained optimization with a variable shape simplex made, 1965) <doi:10.1093/comjnl/7.4.308>, and Box's complex method (constrained optimization with a variable shape simplex, 1965) <doi: 10.1093/comjnl/8.1.42>.
Model-based clustering of high-dimensional non-negative data that follow Generalized Negative Binomial distribution. All functions in this package applies to either continuous or integer data. Correlation between variables are allowed, while samples are assumed to be independent.
Cleans and Normalizes FLUOstar DBF and DAT Files obtained from liposome flux assays. Users should verify extended usage of the package on files from other assay types.
Modelling the vegetation, carbon, nitrogen and water dynamics of undisturbed open bog ecosystems in a temperate to sub-boreal climate. The executable of the model can downloaded from <https://github.com/jeroenpullens/NUCOMBog>.
The Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling.
This package contains data, code, and figures from Hill et al. 2018a (Journal of Experimental Marine Biology and Ecology; <DOI: 10.1016/j.jembe.2018.07.006>) and Hill et al. 2018b (Data In Brief <DOI: 10.1016/j.dib.2018.09.133>). Datasets document plant allometry, stem heights, nutrient and stable isotope content, and sediment denitrification enzyme assays. The data and analysis offer an examination of nitrogen uptake and allocation in two salt marsh plant species.
Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Automate the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment.
Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors. Details of methodologies used in the package can be found in Sharma, A., Mehrotra, R. (2014). <doi:10.1002/2013WR013845>, Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). <doi:10.1016/j.envsoft.2016.05.021>, and Mehrotra, R., & Sharma, A. (2006). <doi:10.1016/j.advwatres.2005.08.007>.
Spatial (cross-)covariance and related geostatistical tools: the nonparametric (cross-)covariance function , the spline correlogram, the nonparametric phase coherence function, local indicators of spatial association (LISA), (Mantel) correlogram, (Partial) Mantel test.
Nested Partially Balanced Bipartite Block (NPBBB) designs involve two levels of blocking: (i) The block design (ignoring sub-block classification) serves as a partially balanced bipartite block (PBBB) design, and (ii) The sub-block design (ignoring block classification) also serves as a PBBB design. More details on constructions of the PBBB designs and their characterization properties are available in Vinayaka et al.(2023) <doi:10.1080/03610926.2023.2251623>. This package calculates A-efficiency values for both block and sub-block structures, along with all parameters of a given NPBBB design.
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of netClust.
Extracts team records/schedules and player statistics for the 2020-2025 National Collegiate Athletic Association (NCAA) women's and men's divisions I, II, and III volleyball teams from <https://stats.ncaa.org>. Functions can aggregate statistics for teams, conferences, divisions, or custom groups of teams.
Scrapes and cleans data from the NHL and ESPN APIs into data.frames and lists. Wraps 125+ endpoints documented in <https://github.com/RentoSaijo/nhlscraper/wiki> from high-level multi-season summaries and award winners to low-level decisecond replays and bookmakers odds, making them more accessible. Features cleaning and visualization tools, primarily for play-by-plays.
This package provides a near drop-in replacement for base::Sys.sleep() that allows more types of input to produce delays in the execution of code and can silence/prevent typical sources of error.
Plot, process, and analyze NPO files produced by Nonpareil <http://enve-omics.ce.gatech.edu/nonpareil/>.
This package provides transfusion-related differential tests on Near-infrared spectroscopy (NIRS) time series with detection limit, which contains two testing statistics: Mean Area Under the Curve (MAUC) and slope statistic. This package applied a penalized spline method within imputation setting. Testing is conducted by a nested permutation approach within imputation. Refer to Guo et al (2018) <doi:10.1177/0962280218786302> for further details.
Naive discriminative learning implements learning and classification models based on the Rescorla-Wagner equations and their equilibrium equations.
Non-negative Matrix Factorization.
Tidied data from the ASA 2006 data expo, as well as a number of useful other related data sets.