Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a comprehensive collection of various microarray-based classification algorithms both from Machine Learning and Statistics. Variable Selection, Hyperparameter tuning, Evaluation and Comparison can be performed combined or stepwise in a user-friendly environment.
comapr detects crossover intervals for single gametes from their haplotype states sequences and stores the crossovers in GRanges object. The genetic distances can then be calculated via the mapping functions using estimated crossover rates for maker intervals. Visualisation functions for plotting interval-based genetic map or cumulative genetic distances are implemented, which help reveal the variation of crossovers landscapes across the genome and across individuals.
Affymetrix Affymetrix Chicken Array annotation data (chip chicken) assembled using data from public repositories.
Annotation files of the formatted genomic annotation for ChromHMM. Three types of text files are included the chromosome sizes, region coordinates and anchors specifying the transcription start and end sites. The package includes data for two versions of the genome of humans and mice.
Clonal cell groups share common mutations within cancer, precancer, and even clinically normal appearing tissues. The frequency and location of these mutations may predict prognosis and cancer risk. It has also been well established that certain genomic regions have increased sensitivity to acquiring mutations. Mutation-sensitive genomic regions may therefore serve as markers for predicting cancer risk. This package contains multiple functions to establish significantly mutated hotspots, compare hotspot mutation burden between samples, and perform exploratory data analysis of the correlation between hotspot mutation burden and personal risk factors for cancer, such as age, gender, and history of carcinogen exposure. This package allows users to identify robust genomic markers to help establish cancer risk.
An experiment data package associated with the publication Dona et al. (2013). Package contains runnable vignettes showing an example image segmentation for one posterior lateral line primordium, and also the data table and code used to analyze tissue-scale lifetime-ratio statistics.
Doscheda focuses on quantitative chemoproteomics used to determine protein interaction profiles of small molecules from whole cell or tissue lysates using Mass Spectrometry data. The package provides a shiny application to run the pipeline, several visualisations and a downloadable report of an experiment.
Data objects needed to allSameID() function of DExMA package. There are also some objects that are necessary to be able to apply the examples of the DExMA package, which illustrate package functionality.
DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results.
The Delta-Delta-Ct (ddCt) Algorithm is an approximation method to determine relative gene expression with quantitative real-time PCR (qRT-PCR) experiments. Compared to other approaches, it requires no standard curve for each primer-target pair, therefore reducing the working load and yet returning accurate enough results as long as the assumptions of the amplification efficiency hold. The ddCt package implements a pipeline to collect, analyse and visualize qRT-PCR results, for example those from TaqMan SDM software, mainly using the ddCt method. The pipeline can be either invoked by a script in command-line or through the API consisting of S4-Classes, methods and functions.
The goal of DELocal is to identify DE genes compared to their neighboring genes from the same chromosomal location. It has been shown that genes of related functions are generally very far from each other in the chromosome. DELocal utilzes this information to identify DE genes comparing with their neighbouring genes.
Many two-colour hybridizations suffer from a dye bias that is both gene-specific and slide-specific. The former depends on the content of the nucleotide used for labeling; the latter depends on the labeling percentage. The slide-dependency was hitherto not recognized, and made addressing the artefact impossible. Given a reasonable number of dye-swapped pairs of hybridizations, or of same vs. same hybridizations, both the gene- and slide-biases can be estimated and corrected using the GASSCO method (Margaritis et al., Mol. Sys. Biol. 5:266 (2009), doi:10.1038/msb.2009.21).
DiffLogo is an easy-to-use tool to visualize motif differences.
Affymetrix Affymetrix Drosophila_2 Array annotation data (chip drosophila2) assembled using data from public repositories.
DEWSeq is a sliding window approach for the analysis of differentially enriched binding regions eCLIP or iCLIP next generation sequencing data.
DNAZooData is a data package giving programmatic access to genome assemblies and Hi-C contact matrices uniformly processed by the [DNA Zoo Consortium](https://www.dnazoo.org/). The matrices are available in the multi-resolution `.hic` format. A URL to corrected genome assemblies in `.fastq` format is also provided to the end-user.
Visualize significant conserved amino acid sequence pattern in groups based on probability theory.
Intuitive framework for identifying spatially variable genes (SVGs) and differential spatial variable pattern (DSP) between conditions via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. For multi-sample, multi-condition datasets, we again fit a NB model via edgeR, incorporating spatial clusters, conditions and their interactions as covariates. DSP genes-representing differences in spatial gene expression patterns across experimental conditions-are identified by testing the interaction between spatial clusters and conditions.
Data package which provides default drug and disease expression profiles for the DvD package.
This package generates ranked lists of differential gene expression for either disease or drug profiles. Input data can be downloaded from Array Express or GEO, or from local CEL files. Ranked lists of differential expression and associated p-values are calculated using Limma. Enrichment scores (Subramanian et al. PNAS 2005) are calculated to a reference set of default drug or disease profiles, or a set of custom data supplied by the user. Network visualisation of significant scores are output in Cytoscape format.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was DrosGenome1\_probe\_tab.
This package implements a DelayedArray of random values where the realization of the sampled values is delayed until they are needed. Reproducible sampling within any subarray is achieved by chunking where each chunk is initialized with a different random seed and stream. The usual distributions in the stats package are supported, along with scalar, vector and arrays for the parameters.
The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package).
This package detects significant differentially methylated regions (for both qualitative and quantitative traits), using a scan statistic with underlying Poisson heuristics. The scan statistic will depend on a sequence of window sizes (# of CpGs within each window) and on a threshold for each window size. This threshold can be calculated by three different means: i) analytically using Siegmund et.al (2012) solution (preferred), ii) an important sampling as suggested by Zhang (2008), and a iii) full MCMC modeling of the data, choosing between a number of different options for modeling the dependency between each CpG.