Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates nonresponse bias analysis (NRBA) for survey data. Such data may arise from a complex sampling design with features such as stratification, clustering, or unequal probabilities of selection. Multiple types of analyses may be conducted: comparisons of response rates across subgroups; comparisons of estimates before and after weighting adjustments; comparisons of sample-based estimates to external population totals; tests of systematic differences in covariate means between respondents and full samples; tests of independence between response status and covariates; and modeling of outcomes and response status as a function of covariates. Extensive documentation and references are provided for each type of analysis. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the methods implemented in this package.
Exploration and analysis of compositional data in the framework of Aitchison (1986, ISBN: 978-94-010-8324-9). This package provides tools for chemical fingerprinting and source tracking of ancient materials.
This package provides customized forest plots for network meta-analysis incorporating direct, indirect, and NMA effects. Includes visualizations of evidence contributions through proportion bars based on the hat matrix and evidence flow decomposition.
Computes the probability density function, the cumulative density function, quantile function, random numbers and measures of inference for the following families exponentiated generalized gull alpha power family, exponentiated gull alpha powerfamily, gull alpha power family.
Simulate demand and attributes for ready to launch new products during their life cycle, or during their introduction and growth phases. You provide the number of products, attributes, time periods and/or other parameters and npdsim can simulate for you the demand for each product during the considered time periods, and the attributes of each product. The simulation for the demand is based on the idea that each product has a shape and a level, where the level is the cumulative demand over the considered time periods, and the shape is the normalized demand across those time periods.
Catalogue of NBER working papers published between June 1973 and December 2021.
Generates functional Magnetic Resonance Imaging (fMRI) time series or 4D data. Some high-level functions are created for fast data generation with only a few arguments and a diversity of functions to define activation and noise. For more advanced users it is possible to use the low-level functions and manipulate the arguments. See Welvaert et al. (2011) <doi:10.18637/jss.v044.i10>.
This package provides a complete and seamless Nonmem simulation interface within R. Turns Nonmem control streams into simulation control streams, executes them with specified simulation input data and returns the results. The simulation is performed by Nonmem', eliminating manual work and risks of re-implementation of models in other tools.
This package provides functions to query databases and notes in Notion', using the official REST API. To learn more about the functionality of the Notion API, see <https://developers.notion.com/>.
The network structural equation modeling conducts a network statistical analysis on a data frame of coincident observations of multiple continuous variables [1]. It builds a pathway model by exploring a pool of domain knowledge guided candidate statistical relationships between each of the variable pairs, selecting the best fit on the basis of a specific criteria such as adjusted r-squared value. This material is based upon work supported by the U.S. National Science Foundation Award EEC-2052776 and EEC-2052662 for the MDS-Rely IUCRC Center, under the NSF Solicitation: NSF 20-570 Industry-University Cooperative Research Centers Program [1] Bruckman, Laura S., Nicholas R. Wheeler, Junheng Ma, Ethan Wang, Carl K. Wang, Ivan Chou, Jiayang Sun, and Roger H. French. (2013) <doi:10.1109/ACCESS.2013.2267611>.
The NetCoupler algorithm identifies potential direct effects of correlated, high-dimensional variables formed as a network with an external variable. The external variable may act as the dependent/response variable or as an independent/predictor variable to the network.
This package infers species associations from community matrices. Uses local and (optional) regional-scale co-occurrence data by comparing observed partial correlation coefficients between species to those estimated from regional species distributions. Extends Gaussian graphical models to a null modeling framework. Provides interface to a variety of inverse covariance matrix estimation methods.
This package implements a nonparametric statistical test for rank or score data from partially-balanced incomplete block-design experiments.
Accompanies the book "Nonparametric Statistical Methods Using R, 2nd Edition" by Kloke and McKean (2024, ISBN:9780367651350). Includes methods, datasets, and random number generation useful for the study of robust and/or nonparametric statistics. Emphasizes classical nonparametric methods for a variety of designs --- especially one-sample and two-sample problems. Includes methods for general scores, including estimation and testing for the two-sample location problem as well as Hogg's adaptive method.
Get or set UNIX priority (niceness) of running R process.
Clinical reporting figures require to use consistent colors and configurations. As a part of the Roche open-source clinical reporting project, namely the NEST project, the nestcolor package specifies the color code and default theme with specifying ggplot2 theme parameters. Users can easily customize color and theme settings before using the reset of NEST packages to ensure consistent settings in both static and interactive output at the downstream.
Access and manipulation of data using the Neotoma Paleoecology Database. <https://api.neotomadb.org/api-docs/>. Examples in functions that require API access are not executed during CRAN checks. Vignettes do not execute as to avoid API calls during CRAN checks.
The NOIA model, as described extensively in Alvarez-Castro & Carlborg (2007), is a framework facilitating the estimation of genetic effects and genotype-to-phenotype maps. This package provides the basic tools to perform linear and multilinear regressions from real populations (provided the phenotype and the genotype of every individuals), estimating the genetic effects from different reference points, the genotypic values, and the decomposition of genetic variances in a multi-locus, 2 alleles system. This package is presented in Le Rouzic & Alvarez-Castro (2008).
This package provides a reproducible workflow for binning and visualizing NMR (nuclear magnetic resonance) spectra from environmental samples. The nmrrr package is intended for post-processing of NMR data, including importing, merging and, cleaning data from multiple files, visualizing NMR spectra, performing binning/integrations for compound classes, and relative abundance calculations. This package can be easily inserted into existing analysis workflows by users to help with analyzing and interpreting NMR data.
Calculate Overall Survival or Recurrence-Free Survival for breast cancer patients, using NHS Predict'. The time interval for the estimation can be set up to 15 years, with default at 10. Incremental therapy benefits are estimated for hormone therapy, chemotherapy, trastuzumab, and bisphosphonates. An additional function, suited for SCAN audits, features a more user-friendly version of the code, with fewer inputs, but necessitates the correct standardised inputs. This work is not affiliated with the development of NHS Predict and its underlying statistical model. Details on NHS Predict can be found at: <doi:10.1186/bcr2464>. The web version of NHS Predict': <https://breast.predict.nhs.uk/>. A small dataset of 50 fictional patient observations is provided for the purpose of running examples with the main two functions, and an additional dataset is provided for running example with the dedicated SCAN function.
Format numbers and plots for publication; includes the removal of leading zeros, standardization of number of digits, addition of affixes, and a p-value formatter. These tools combine the functionality of several base functions such as paste()', format()', and sprintf() into specific use case functions that are named in a way that is consistent with usage, making their names easy to remember and easy to deploy.
Create and manipulate numeric list ('nlist') objects. An nlist is an S3 list of uniquely named numeric objects. An numeric object is an integer or double vector, matrix or array. An nlists object is a S3 class list of nlist objects with the same names, dimensionalities and typeofs. Numeric list objects are of interest because they are the raw data inputs for analytic engines such as JAGS', STAN and TMB'. Numeric lists objects, which are useful for storing multiple realizations of of simulated data sets, can be converted to coda::mcmc and coda::mcmc.list objects.
Automated population pharmacokinetic modeling framework for data-driven initialisation, model evaluation, and metaheuristic optimization. Supports genetic algorithms, ant colony optimization, tabu search, and stepwise procedures for automated model selection and parameter estimation within the nlmixr2 ecosystem.
This package provides statistical methods for network meta-analysis of 1รข 5 diagnostic tests to simultaneously compare multiple tests within a missing data framework, including: - Bayesian hierarchical model for network meta-analysis of multiple diagnostic tests (Ma, Lian, Chu, Ibrahim, and Chen (2018) <doi:10.1093/biostatistics/kxx025>) - Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests (Lian, Hodges, and Chu (2019) <doi:10.1080/01621459.2018.1476239>).