Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Based on the compound Poisson risk process that is perturbed by a Brownian motion, saddlepoint approximations to some measures of risk are provided. Various approximation methods for the probability of ruin are also included. Furthermore, exact values of both the risk measures as well as the probability of ruin are available if the individual claims follow a hypo-exponential distribution (i. e., if it can be represented as a sum of independent exponentially distributed random variables with different rate parameters). For more details see Gatto and Baumgartner (2014) <doi:10.1007/s11009-012-9316-5>.
This package provides a framework for performing discrete (share-level) simulations of investment strategies. Simulated portfolios optimize exposure to an input signal subject to constraints such as position size and factor exposure. For background see L. Chincarini and D. Kim (2010, ISBN:978-0-07-145939-6) "Quantitative Equity Portfolio Management".
Estimates area and subarea level proportions using the Small Area Estimation (SAE) Twofold Subarea Model with a hierarchical Bayesian (HB) approach under Beta distribution. A number of simulated datasets generated for illustration purposes are also included. The rstan package is employed to estimate parameters via the Hamiltonian Monte Carlo and No U-Turn Sampler algorithm. The model-based estimators include the HB mean, the variation of the mean, and quantiles. For references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, Erciulescu et al.(2019) <doi:10.1111/rssa.12390>, and Yudasena (2024).
Read CODAR's SeaSonde High-Frequency Radar spectra files, compute radial metrics, and generate plots for spectra and antenna pattern data. Implementation is based in technical manuals, publications and patents, please refer to the following documents for more information: Barrick and Lipa (1999) <https://codar.com/images/about/patents/05990834.PDF>; CODAR Ocean Sensors (2002) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf>; Lipa et al. (2006) <doi:10.1109/joe.2006.886104>; Paolo et al. (2007) <doi:10.1109/oceans.2007.4449265>; CODAR Ocean Sensors (2009a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf>; CODAR Ocean Sensors (2009b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf>; CODAR Ocean Sensors (2016a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf>; CODAR Ocean Sensors (2016b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf>; CODAR Ocean Sensors (2016c) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf>; Bushnell and Worthington (2022) <doi:10.25923/4c5x-g538>.
Simple Component Analysis (SCA) often provides much more interpretable components than Principal Components (PCA) while still representing much of the variability in the data.
This package provides function to apply "Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002/sim.4289>.
This package implements self-organising maps combined with hierarchical cluster analysis (SOM-HCA) for clustering and visualization of high-dimensional data. The package includes functions to estimate the optimal map size based on various quality measures and to generate a model using the selected dimensions. It also performs hierarchical clustering on the map nodes to group similar units. Documentation about the SOM-HCA method is provided in Pastorelli et al. (2024) <doi:10.1002/xrs.3388>.
Fit Hawkes and log-Gaussian Cox process models with extensions. Introduced in Hawkes (1971) <doi:10.2307/2334319> a Hawkes process is a self-exciting temporal point process where the occurrence of an event immediately increases the chance of another. We extend this to consider self-inhibiting process and a non-homogeneous background rate. A log-Gaussian Cox process is a Poisson point process where the log-intensity is given by a Gaussian random field. We extend this to a joint likelihood formulation fitting a marked log-Gaussian Cox model. In addition, the package offers functionality to fit self-exciting spatiotemporal point processes. Models are fitted via maximum likelihood using TMB (Template Model Builder). Where included 1) random fields are assumed to be Gaussian and are integrated over using the Laplace approximation and 2) a stochastic partial differential equation model, introduced by Lindgren, Rue, and Lindström. (2011) <doi:10.1111/j.1467-9868.2011.00777.x>, is defined for the field(s).
This package provides a set of function that implements for seasonal multivariate time series analysis based on Seasonal Generalized Space Time Autoregressive with Seemingly Unrelated Regression (S-GSTAR-SUR) Model by Setiawan(2016)<https://www.researchgate.net/publication/316517889_S-GSTAR-SUR_model_for_seasonal_spatio_temporal_data_forecasting>.
Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the seasonalview package. Uses the X-13-binaries from the x13binary package.
Sensitivity analysis for multiple outcomes in observational studies. For instance, all linear combinations of several outcomes may be explored using Scheffe projections in the comparison() function; see Rosenbaum (2016, Annals of Applied Statistics) <doi:10.1214/16-AOAS942>. Alternatively, attention may focus on a few principal components in the principal() function. The package includes parallel methods for individual outcomes, including tests in the senm() function and confidence intervals in the senmCI() function.
Two-step and maximum likelihood estimation of Heckman-type sample selection models: standard sample selection models (Tobit-2), endogenous switching regression models (Tobit-5), sample selection models with binary dependent outcome variable, interval regression with sample selection (only ML estimation), and endogenous treatment effects models. These methods are described in the three vignettes that are included in this package and in econometric textbooks such as Greene (2011, Econometric Analysis, 7th edition, Pearson).
Used for creating swimmers plots with functions to customize the bars, add points, add lines, add text, and add arrows.
This package provides a socket server allows to connect clients to R.
In a clinical trial, it frequently occurs that the most credible outcome to evaluate the effectiveness of a new therapy (the true endpoint) is difficult to measure. In such a situation, it can be an effective strategy to replace the true endpoint by a (bio)marker that is easier to measure and that allows for a prediction of the treatment effect on the true endpoint (a surrogate endpoint). The package Surrogate allows for an evaluation of the appropriateness of a candidate surrogate endpoint based on the meta-analytic, information-theoretic, and causal-inference frameworks. Part of this software has been developed using funding provided from the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no 602552), the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3), GlaxoSmithKline Biologicals, Baekeland Mandaat (HBC.2022.0145), and Johnson & Johnson Innovative Medicine.
This package provides estimation of simultaneous bootstrap and asymptotic confidence intervals for diversity indices, namely the Shannon and the Simpson index. Several pre--specified multiple comparison types are available to choose. Further user--defined contrast matrices are applicable. In addition, simboot estimates adjusted as well as unadjusted p--values for two of the three proposed bootstrap methods. Further simboot allows for comparing biological diversities of two or more groups while simultaneously testing a user-defined selection of Hill numbers of orders q, which are considered as appropriate and useful indices for measuring diversity.
Full text, in data frames containing one row per verse, of the Standard Works of The Church of Jesus Christ of Latter-day Saints (LDS). These are the Old Testament, (KJV), the New Testament (KJV), the Book of Mormon, the Doctrine and Covenants, and the Pearl of Great Price.
Discovery of spatial patterns with Hidden Markov Random Field. This package is designed for spatial transcriptomic data and single molecule fluorescent in situ hybridization (FISH) data such as sequential fluorescence in situ hybridization (seqFISH) and multiplexed error-robust fluorescence in situ hybridization (MERFISH). The methods implemented in this package are described in Zhu et al. (2018) <doi:10.1038/nbt.4260>.
This package provides a system contains easy-to-use tools as a support for time series analysis courses. In particular, it incorporates a technique called Generalized Method of Wavelet Moments (GMWM) as well as its robust implementation for fast and robust parameter estimation of time series models which is described, for example, in Guerrier et al. (2013) <doi: 10.1080/01621459.2013.799920>. More details can also be found in the paper linked to via the URL below.
This package provides a comprehensive set of string manipulation functions based on those found in Python without relying on reticulate'. It provides functions that intend to (1) make it easier for users familiar with Python to work with strings, (2) reduce the complexity often associated with string operations, (3) and enable users to write more readable and maintainable code that manipulates strings.
Estimates correlation coefficients with associated confidence limits for bivariate, partially censored survival times. Uses the iterative multiple imputation approach proposed by Schemper, Kaider, Wakounig and Heinze (2013) <doi:10.1002/sim.5874>. Provides a scatterplot function to visualize the bivariate distribution, either on the original time scale or as copula.
This package provides tools for analysing the agreement of two or more rankings of the same items. Examples are importance rankings of predictor variables and risk predictions of subjects. Benchmarks for agreement are computed based on random permutation and bootstrap. See Ekstrøm CT, Gerds TA, Jensen, AK (2018). "Sequential rank agreement methods for comparison of ranked lists." _Biostatistics_, *20*(4), 582-598 <doi:10.1093/biostatistics/kxy017> for more information.
Spatial coverage sampling and random sampling from compact geographical strata created by k-means. See Walvoort et al. (2010) <doi:10.1016/j.cageo.2010.04.005> for details.
This package provides a dynamic model of the big-picture, whole ecosystem effects of hydrodynamics, temperature, nutrients, and fishing on continental shelf marine food webs. The package is described in: Heath, M.R., Speirs, D.C., Thurlbeck, I. and Wilson, R.J. (2020) <doi:10.1111/2041-210X.13510> StrathE2E2: An R package for modelling the dynamics of marine food webs and fisheries. 8pp.