Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Character vector to numerical translation in Euros from Spanish spelled monetary quantities. Reverse translation from integer to Spanish. Upper limit is up to the millions range. Geocoding via Cadastral web site.
This package provides tools for accessing and processing datasets prepared by the Foundation SmarterPoland.pl. Among all: access to API of Google Maps, Central Statistical Office of Poland, MojePanstwo, Eurostat, WHO and other sources.
Analysis Results Standard (ARS), a foundational standard by CDISC (Clinical Data Interchange Standards Consortium), provides a logical data model for metadata describing all components to calculate Analysis Results. <https://www.cdisc.org/standards/foundational/analysis-results-standard> Using siera package, ARS metadata is ingested (JSON or Excel format), producing programmes to generate Analysis Results Datasets (ARDs).
Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
Create short sprint acceleration-velocity (AVP) and force-velocity (FVP) profiles and predict kinematic and kinetic variables using the timing-gate split times, laser or radar gun data, tether devices data, as well as the data provided by the GPS and LPS monitoring systems. The modeling method utilized in this package is based on the works of Furusawa K, Hill AV, Parkinson JL (1927) <doi: 10.1098/rspb.1927.0035>, Greene PR. (1986) <doi: 10.1016/0025-5564(86)90063-5>, Chelly SM, Denis C. (2001) <doi: 10.1097/00005768-200102000-00024>, Clark KP, Rieger RH, Bruno RF, Stearne DJ. (2017) <doi: 10.1519/JSC.0000000000002081>, Samozino P. (2018) <doi: 10.1007/978-3-319-05633-3_11>, Samozino P. and Peyrot N., et al (2022) <doi: 10.1111/sms.14097>, Clavel, P., et al (2023) <doi: 10.1016/j.jbiomech.2023.111602>, Jovanovic M. (2023) <doi: 10.1080/10255842.2023.2170713>, and Jovanovic M., et al (2024) <doi: 10.3390/s24092894>.
In Shiny apps, it is sometimes useful to see a plot or a table in full screen. Using Shinyfullscreen', you can easily designate the HTML elements that can be displayed on fullscreen and use buttons to trigger the fullscreen view.
PAM (Partitioning Around Medoids) algorithm application to samples of single cell sequencing techniques with a high number of cells (as many as the computer memory allows). The package uses a binary format to store matrices (either full, sparse or symmetric) in files written in the disk that can contain any data type (not just double) which allows its manipulation when memory is sufficient to load them as int or float, but not as double. The PAM implementation is done in parallel, using several/all the cores of the machine, if it has them. This package shares a great part of its code with packages jmatrix and parallelpam but their functionality is included here so there is no need to install them.
There are several functions to implement the method for analysis in a randomized clinical trial with strata with following key features. A stratified Mann-Whitney estimator addresses the comparison between two randomized groups for a strictly ordinal response variable. The multivariate vector of such stratified Mann-Whitney estimators for multivariate response variables can be considered for one or more response variables such as in repeated measurements and these can have missing completely at random (MCAR) data. Non-parametric covariance adjustment is also considered with the minimal assumption of randomization. The p-value for hypothesis test and confidence interval are provided.
Characterize daily stream discharge and water quality data and subsample water quality data. Provide dates, discharge, and water quality measurements and streamsampler can find gaps, get summary statistics, and subsample according to common stream sampling protocols. Stream sampling protocols are described in Lee et al. (2016) <doi:10.1016/j.jhydrol.2016.08.059> and Lee et al. (2019) <doi:10.3133/sir20195084>.
This package provides tools for predicting ICU length of stay and assessing ICU efficiency. It is based on the methodologies proposed by Peres et al. (2022, 2023), which utilize data-driven approaches for modeling and validation, offering insights into ICU performance and patient outcomes. References: Peres et al. (2022)<https://pubmed.ncbi.nlm.nih.gov/35988701/>, Peres et al. (2023)<https://pubmed.ncbi.nlm.nih.gov/37922007/>. More information: <https://github.com/igor-peres/ICU-Length-of-Stay-Prediction>.
This package provides a tool for simulating rhythmic data: transcriptome data using Gaussian or negative binomial distributions, and behavioral activity data using Bernoulli or Poisson distributions. See Singer et al. (2019) <doi:10.7717/peerj.6985>.
Transformation of sea currents to connectivity data. Two files of horizontal and vertical currents flows are transformed into connectivity data in the form of sfnetwork', shapefile, edge list and adjacency matrix. An application example is shown at Nagkoulis et al. (2025) <doi:10.1016/j.dib.2024.111268>.
This package contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
Simulates data sets in order to explore modeling techniques or better understand data generating processes. The user specifies a set of relationships between covariates, and generates data based on these specifications. The final data sets can represent data from randomized control trials, repeated measure (longitudinal) designs, and cluster randomized trials. Missingness can be generated using various mechanisms (MCAR, MAR, NMAR).
This package provides a probability tree allows to compute probabilities of complex events, such as genotype probabilities in intermediate generations of inbreeding through recurrent self-fertilization (selfing). This package implements functionality to compute probability trees for two- and three-marker genotypes in the F2 to F7 selfing generations. The conditional probabilities are derived automatically and in symbolic form. The package also provides functionality to extract and evaluate the relevant probabilities.
This package provides functions for sample size estimation and simulation in clinical trials. Includes methods for selecting the best group using the Indifference-zone approach, as well as designs for non-inferiority, equivalence, and negative binomial models. For the sample size calculation for non-inferiority of vaccines, the approach is based on Fleming, Powers, and Huang (2021) <doi:10.1177/1740774520988244>. The Indifference-zone approach is based on Sobel and Huyett (1957) <doi:10.1002/j.1538-7305.1957.tb02411.x> and Bechhofer, Santner, and Goldsman (1995, ISBN:978-0-471-57427-9).
This package provides functions to take samples of data, sample size estimation and getting useful estimators such as total, mean, proportion about its population using simple random, stratified, systematic and cluster sampling.
This package implements a method to combine multiple levels of multiple sequence alignment to uncover the structure of complex DNA rearrangements.
Programmatic interface to the SNOTEL snow data (<https://www.nrcs.usda.gov/programs-initiatives/sswsf-snow-survey-and-water-supply-forecasting-program>). Provides easy downloads of snow data into your R work space or a local directory. Additional post-processing routines to extract snow season indexes are provided.
Set of functions to quantify and map the behaviour of winds generated by tropical storms and cyclones in space and time. It includes functions to compute and analyze fields such as the maximum sustained wind field, power dissipation index and duration of exposure to winds above a given threshold. It also includes functions to map the trajectories as well as characteristics of the storms.
When working across multiple machines and, similarly for reproducible research, it can be time consuming to ensure that you have all of the needed packages installed and loaded and that the correct working directory is set. simpleSetup provides simple functions for making these tasks more straightforward.
Predicts the occurrence times (in day-of-year) of spring phenological events. Three methods, including the accumulated degree days (ADD) method, the accumulated days transferred to a standardized temperature (ADTS) method, and the accumulated developmental progress (ADP) method, were used. See Shi et al. (2017a) <doi:10.1016/j.agrformet.2017.04.001> and Shi et al. (2017b) <doi:10.1093/aesa/sax063> for details.
Programs to find the sample size or power of studies using the Sequential Parallel Comparison Design (SPCD) and programs to analyze such studies. This is a clinical trial design where patients initially on placebo who did not respond are re-randomized between placebo and active drug in a second phase and the results of the two phases are pooled. The method of analyzing binary data with this design is described in Fava,Evins, Dorer and Schoenfeld(2003) <doi:10.1159/000069738>, and the method of analyzing continuous data is described in Chen, Yang, Hung and Wang (2011) <doi:10.1016/j.cct.2011.04.006>.
This package provides you with easy, programmatic access to SRDP data.