Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides utility functions for validation and quality control of clinical trial datasets and outputs across SDTM', ADaM and TFL workflows. The package supports dataset loading, metadata inspection, frequency and summary calculations, table-ready aggregations, and compare-style dataset review similar to SAS PROC COMPARE'. Functions are designed to support reproducible execution, transparent review, and independent verification of statistical programming results. Dataset comparisons may leverage arsenal <https://cran.r-project.org/package=arsenal>.
Based on the structure of the SPSS version of the Swiss Household Panel (SHP) data, provides a function seqFromWaves() that seeks the data of variables specified by the user in each of the wave files and collects them as sequences. The function also matches the sequences with variables from other files such as the master files of persons (MP) and households (MH), and social origins (SO). It can also match with activity calendar data (CA).
This package provides a set of functions for querying and parsing data from Solr (<https://solr.apache.org/>) endpoints (local and remote), including search, faceting', highlighting', stats', and more like this'. In addition, some functionality is included for creating, deleting, and updating documents in a Solr database'.
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
This package provides tools for analyzing tail dependence in any sample or in particular theoretical models. The package uses only theoretical and non parametric methods, without inference. The primary goals of the package are to provide: (a)symmetric multivariate extreme value models in any dimension; theoretical and empirical indices to order tail dependence; theoretical and empirical graphical methods to visualize tail dependence.
Companion package that supports the surveydown survey platform (<https://surveydown.org>). The default method for working with a surveydown survey is to edit the plain text survey.qmd and app.R files. With sdstudio', you can create, preview and manage surveys with a shiny application as a graphical user interface.
This package provides functions for spatial methods based on generalized estimating equations (GEE) and wavelet-revised methods (WRM), functions for scaling by wavelet multiresolution regression (WMRR), conducting multi-model inference, and stepwise model selection. Further, contains functions for spatially corrected model accuracy measures.
Manage package documentation and namespaces from the command line. Programmatically attach namespaces in R and Rmd script, populates Roxygen2 skeletons with information scraped from within functions and populate the Imports field of the DESCRIPTION file.
Species sensitivity distributions are cumulative probability distributions which are fitted to toxicity concentrations for different species as described by Posthuma et al.(2001) <isbn:9781566705783>. The ssdtools package uses Maximum Likelihood to fit distributions such as the gamma, log-logistic, log-normal and log-normal log-normal mixture. Multiple distributions can be averaged using Akaike Information Criteria. Confidence intervals on hazard concentrations and proportions are produced by bootstrapping.
Local Correlation Integral (LOCI) method for outlier identification is implemented here. The LOCI method developed here is invented in Breunig, et al. (2000), see <doi:10.1145/342009.335388>.
Fast, wavelet-based Empirical Bayes shrinkage methods for signal denoising, including smoothing Poisson-distributed data and Gaussian-distributed data with possibly heteroskedastic error. The algorithms implement the methods described Z. Xing, P. Carbonetto & M. Stephens (2021) <https://jmlr.org/papers/v22/19-042.html>.
It fits scale mixture of skew-normal linear mixed models using either an expectationâ maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence <doi:10.18637/jss.v115.i07>.
There are four categories of Phase III clinical trials according to different research goals, including (1) Testing for equality, (2) Superiority trial, (3) Non-inferiority trial, and (4) Equivalence trial. This package aims to help researchers to calculate sample size when comparing means or proportions in Phase III clinical trials with different research goals.
Fit univariate right, left or interval censored regression model under the scale mixture of normal distributions.
This package provides the Fortran code of the R package spam with 64-bit integers. Loading this package together with the R package spam enables the sparse matrix class spam to handle huge sparse matrices with more than 2^31-1 non-zero elements. Documentation is provided in Gerber, Moesinger and Furrer (2017) <doi:10.1016/j.cageo.2016.11.015>.
An automatic cell type detection and assignment algorithm for single cell RNA-Seq and Cytof/FACS data. SCINA is capable of assigning cell type identities to a pool of cells profiled by scRNA-Seq or Cytof/FACS data with prior knowledge of markers, such as genes and protein symbols that are highly or lowly expressed in each category. See Zhang Z, et al (2019) <doi:10.3390/genes10070531> for more details.
This package implements the SPCAvRP algorithm, developed and analysed in "Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Samworth, R. J. (2018) <arXiv:1712.05630>. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.
This package provides a collection of functions for statistical and multivariate analysis of surface-related data, with a focus on antimicrobial activity and omniphobicity. Designed to support materials scientists and researchers in exploring structureâ function relationships in surface-engineered materials through reproducible and interpretable workflows. For more details, see Li et al. (2021) <doi:10.1002/advs.202100368>, and Kwon et al. (2020) <doi:10.3390/polym12081826>.
Fitting Cox proportional hazard model under dependent right censoring using copula and maximum penalised likelihood methods.
This package provides a novel spatial topic model to integrate both cell type and spatial information to identify the complex spatial tissue architecture on multiplexed tissue images without human intervention. The Package implements a collapsed Gibbs sampling algorithm for inference. SpaTopic is scalable to large-scale image datasets without extracting neighborhood information for every single cell. For more details on the methodology, see <https://xiyupeng.github.io/SpaTopic/>.
Miscellaneous functions for working with stars objects, mainly single-band rasters. Currently includes functions for: (1) focal filtering, (2) detrending of Digital Elevation Models, (3) calculating flow length, (4) calculating the Convergence Index, (5) calculating topographic aspect and topographic slope.
Model age schedules of mortality, nqx, suitable for a life table. This package implements the SVD-Comp mortality model indexed by either child or child/adult mortality. Given input value(s) of either 5q0 or (5q0, 45q15), the qx() function generates single-year 1qx or 5-year 5qx conditional age-specific probabilities of dying. See Clark (2016) <doi:10.48550/arXiv.1612.01408> and Clark (2019) <doi:10.1007/s13524-019-00785-3>.
This tool is designed to analyze up to 5 Fraud Detection Questions integrated into a survey, focusing on potential fraudulent participants to clean the survey dataset from potential fraud. Fraud Detection Questions and further information available at <https://surveydefense.org>.
The past decade has demonstrated an increased need to better understand risks leading to systemic crises. This framework offers scholars, practitioners and policymakers a useful toolbox to explore such risks in financial systems. Specifically, this framework provides popular econometric and network measures to monitor systemic risk and to measure the consequences of regulatory decisions. These systemic risk measures are based on the frameworks of Adrian and Brunnermeier (2016) <doi:10.1257/aer.20120555> and Billio, Getmansky, Lo and Pelizzon (2012) <doi:10.1016/j.jfineco.2011.12.010>.