Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides documentation in form of a common vignette to packages distr', distrEx', distrMod', distrSim', distrTEst', distrTeach', and distrEllipse'.
Multivariate Gaussian mixture model with a determinant point process prior to promote the discovery of parsimonious components from observed data. See Xu, Mueller, Telesca (2016) <doi:10.1111/biom.12482>.
It allows running Dynare program from base R, R Markdown and Quarto. Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium ('DSGE') and overlapping generations ('OLG') models. This package does not only integrate R and Dynare but also serves as a Dynare Knit-Engine for knitr package. The package requires Dynare (<https://www.dynare.org/>) and Octave (<https://www.octave.org/download.html>). Write all your Dynare commands in R or R Markdown chunk.
Implement some deep learning architectures and neural network algorithms, including BP,RBM,DBN,Deep autoencoder and so on.
Detection and attribution of climate change using methods including optimal fingerprinting via generalized total least squares or an estimating equation approach (Li et al., 2025, <doi:10.1175/JCLI-D-24-0193.1>; Ma et al., 2023, <doi:10.1175/JCLI-D-22-0681.1>). Provides shrinkage estimators for the covariance matrix following Ledoit and Wolf (2004, <doi:10.1016/S0047-259X(03)00096-4>) and Ledoit and Wolf (2017, <doi:10.2139/ssrn.2383361>).
This package performs various analyzes of descriptive statistics, including correlations, graphics and tables.
S3 classes for multivariate optimization using the desirability function by Derringer and Suich (1980).
Estimates latent variables of public opinion cross-nationally and over time from sparse and incomparable survey data. DCPO uses a population-level graded response model with country-specific item bias terms. Sampling is conducted with Stan'. References: Solt (2020) <doi:10.31235/osf.io/d5n9p>.
Estimates the Dyad Ratios Algorithm for pooling and smoothing poll estimates. The Dyad Ratios Algorithm smooths both forward and backward in time over polling results allowing differences in both question type and polling house. The result is an estimate of a single latent variable that describes the systematic trend over time in the (noisy) polling results. See James A. Stimson (2018) <doi:10.1177/0759106318761614> and the package's vignette for more details.
Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. driveR is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, driveR uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, phenolyzer gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.
Dynamic graphical models for multivariate time series data to estimate directed dynamic networks in functional magnetic resonance imaging (fMRI), see Schwab et al. (2017) <doi:10.1016/j.neuroimage.2018.03.074>.
This package provides methods for evaluating the probability mass function, cumulative distribution function, and generating random samples from discrete tempered stable distributions. For more details see Grabchak (2021) <doi:10.1007/s11009-021-09904-3>.
There are many different formats dates are commonly represented with: the order of day, month, or year can differ, different separators ("-", "/", or whitespace) can be used, months can be numerical, names, or abbreviations and year given as two digits or four. datefixR takes dates in all these different formats and converts them to R's built-in date class. If datefixR cannot standardize a date, such as because it is too malformed, then the user is told which date cannot be standardized and the corresponding ID for the row. datefixR also allows the imputation of missing days and months with user-controlled behavior.
Offers robust tools to identify and manage incomplete responses in survey datasets, thereby enhancing the quality and reliability of research findings.
Phase I/II adaptive dose-finding design for single-agent Molecularly Targeted Agent (MTA), according to the paper "Phase I/II Dose-Finding Design for Molecularly Targeted Agent: Plateau Determination using Adaptive Randomization", Riviere Marie-Karelle et al. (2016) <doi:10.1177/0962280216631763>.
Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.
The new (dQTG.seq1 and dQTG.seq2) and existing (SmoothLOD, G', deltaSNP and ED) bulked segregant analysis methods are used to identify various types of quantitative trait loci for complex traits via extreme phenotype individuals in bi-parental segregation populations (F2, backcross, doubled haploid and recombinant inbred line). The numbers of marker alleles in extreme low and high pools are used in existing methods to identify trait-related genes, while the numbers of marker alleles and genotypes in extreme low and high pools are used in the new methods to construct a new statistic Gw for identifying trait-related genes. dQTG-seq2 is feasible to identify extremely over-dominant and small-effect genes in F2. Li P, Li G, Zhang YW, Zuo JF, Liu JY, Zhang YM (2022, <doi: 10.1016/j.xplc.2022.100319>).
Derivative-Free optimization algorithms. These algorithms do not require gradient information. More importantly, they can be used to solve non-smooth optimization problems.
Useful functions for various DDI (Data Documentation Initiative) related inputs and outputs. Converts data files to and from DDI, SPSS, Stata, SAS, R and Excel, including user declared missing values.
Mapping, spatial analysis, and statistical modeling of microdata from sources such as the Demographic and Health Surveys <https://www.dhsprogram.com/> and Integrated Public Use Microdata Series <https://www.ipums.org/>. It can also be extended to other datasets. The package supports spatial correlation index construction and visualization, along with empirical Bayes approximation of regression coefficients in a multistage setup. The main functionality is repeated regression â for example, if we have to run regression for n groups, the group ID should be vertically composed into the variable for the parameter `location_var`. It can perform various kinds of regression, such as Generalized Regression Models, logit, probit, and more. Additionally, it can incorporate interaction effects. The key benefit of the package is its ability to store the regression results performed repeatedly on a dataset by the group ID, along with respective p-values and map those estimates.
It provides the ability to generate images from documents of different types. Three main features are provided: functions for generating document thumbnails, functions for performing visual tests of documents and a function for updating fields and table of contents of a Microsoft Word or RTF document. In order to work, LibreOffice must be installed on the machine and or Microsoft Word'. If the latter is available, it can be used to produce PDF documents or images identical to the originals; otherwise, LibreOffice is used and the rendering can be sometimes different from the original documents.
In practice, we will encounter problems where the longitudinal performance of processes needs to be monitored over time. Dynamic screening systems (DySS) are methods that aim to identify and give signals to processes with poor performance as early as possible. This package is designed to implement dynamic screening systems and the related methods. References: Qiu, P. and Xiang, D. (2014) <doi:10.1080/00401706.2013.822423>; Qiu, P. and Xiang, D. (2015) <doi:10.1002/sim.6477>; Li, J. and Qiu, P. (2016) <doi:10.1080/0740817X.2016.1146423>; Li, J. and Qiu, P. (2017) <doi:10.1002/qre.2160>; You, L. and Qiu, P. (2019) <doi:10.1080/00949655.2018.1552273>; Qiu, P., Xia, Z., and You, L. (2020) <doi:10.1080/00401706.2019.1604434>; You, L., Qiu, A., Huang, B., and Qiu, P. (2020) <doi:10.1002/bimj.201900127>; You, L. and Qiu, P. (2021) <doi:10.1080/00224065.2020.1767006>.
Designed to create a basic data dictionary and append to the original dataset's attributes list. The package makes use of a tidy dataset and creates a data frame that will serve as a linker that will aid in building the dictionary. The dictionary is then appended to the list of the original dataset's attributes. The user will have the option of entering variable and item descriptions by writing code or use alternate functions that will prompt the user to add these.
We provide 70 data sets of females of reproductive age from 19 Asian countries, ranging in age from 15 to 49. The data sets are extracted from demographic and health surveys that were conducted over an extended period of time. Moreover, the functions also provide Whippleâ s index as well as age reporting quality such as very rough, rough, approximate, accurate, and highly accurate.