Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Constructs a shiny app function with interactive displays for conditional visualization of models, data and density functions. An extended version of package condvis'. Catherine B. Hurley, Mark O'Connell,Katarina Domijan (2021) <doi:10.1080/10618600.2021.1983439>.
This package provides a first-principle, phylogeny-aware comparative genomics tool for investigating associations between terms used to annotate genomic components (e.g., Pfam IDs, Gene Ontology terms,) with quantitative or rank variables such as number of cell types, genome size, or density of specific genomic elements. See the project website for more information, documentation and examples, and <doi:10.1016/j.patter.2023.100728> for the full paper.
Converts numbers to continued fractions and back again. A solver for Pell's Equation is provided. The method for calculating roots in continued fraction form is provided without published attribution in such places as Professor Emeritus Jonathan Lubin, <http://www.math.brown.edu/jlubin/> and his post to StackOverflow, <https://math.stackexchange.com/questions/2215918> , or Professor Ron Knott, e.g., <https://r-knott.surrey.ac.uk/Fibonacci/cfINTRO.html> .
Use the high-precision arithmetic provided by the R package Rmpfr to compute a custom-made Gauss quadrature nodes and weights, with up to 33 nodes, using a moment-based method via moment determinants. Paul Kabaila (2022) <arXiv:2211.04729>.
In many cases, experiments must be repeated across multiple seasons or locations to ensure applicability of findings. A single experiment conducted in one location and season may yield limited conclusions, as results can vary under different environmental conditions. In agricultural research, treatment à location and treatment à season interactions play a crucial role. Analyzing a series of experiments across diverse conditions allows for more generalized and reliable recommendations. The CANE package facilitates the pooled analysis of experiments conducted over multiple years, seasons, or locations. It is designed to assess treatment interactions with environmental factors (such as location and season) using various experimental designs. The package supports pooled analysis of variance (ANOVA) for the following designs: (1) PooledCRD()': completely randomized design; (2) PooledRBD()': randomized block design; (3) PooledLSD()': Latin square design; (4) PooledSPD()': split plot design; and (5) PooledStPD()': strip plot design. Each function provides the following outputs: (i) Individual ANOVA tables based on independent analysis for each location or year; (ii) Testing of homogeneity of error variances among distinct locations using Bartlettâ s Chi-Square test; (iii) If Bartlettâ s test is significant, Aitkenâ s transformation, defined as the ratio of the response to the square root of the error mean square, is applied to the response variable; otherwise, the data is used as is; (iv) Combined analysis to obtain a pooled ANOVA table; (v) Multiple comparison tests, including Tukey's honestly significant difference (Tukey's HSD) test, Duncanâ s multiple range test (DMRT), and the least significant difference (LSD) test, for treatment comparisons. The statistical theory and steps of analysis of these designs are available in Dean et al. (2017)<doi:10.1007/978-3-319-52250-0> and Ruà z et al. (2024)<doi:10.1007/978-3-031-65575-3>. By broadening the scope of experimental conclusions, CANE enables researchers to derive robust, widely applicable recommendations. This package is particularly valuable in agricultural research, where accounting for treatment à location and treatment à season interactions is essential for ensuring the validity of findings across multiple settings.
Finds the most likely originating tissue(s) and developmental stage(s) of tissue-specific RNA sequencing data. The package identifies both pure transcriptomes and mixtures of transcriptomes. The most likely identity is found through comparisons of the sequencing data with high-throughput in situ hybridisation patterns. Typical uses are the identification of cancer cell origins, validation of cell culture strain identities, validation of single-cell transcriptomes, and validation of identity and purity of flow-sorting and dissection sequencing products.
Tables summarizing clinical trial results are often complex and require detailed tailoring prior to submission to a health authority. The crane package supplements the functionality of the gtsummary package for creating these often highly bespoke tables in the pharmaceutical industry.
Detects multiple changes in slope using the CPOP dynamic programming approach of Fearnhead, Maidstone, and Letchford (2019) <doi:10.1080/10618600.2018.1512868>. This method finds the best continuous piecewise linear fit to data under a criterion that measures fit to data using the residual sum of squares, but penalizes complexity based on an L0 penalty on changes in slope. Further information regarding the use of this package with detailed examples can be found in Fearnhead and Grose (2024) <doi:10.18637/jss.v109.i07>.
Perceptually uniform palettes for commonly used variables in oceanography as functions taking an integer and producing character vectors of colours. See Thyng, K.M., Greene, C.A., Hetland, R.D., Zimmerle, H.M. and S.F. DiMarco (2016) <doi:10.5670/oceanog.2016.66> for the guidelines adhered to when creating the palettes.
Routines for the graphical representation of correlation matrices by means of correlograms, MDS maps and biplots obtained by PCA, PFA or WALS (weighted alternating least squares); See Graffelman & De Leeuw (2023) <doi: 10.1080/00031305.2023.2186952>.
This package provides a simple countdown timer for slides and HTML documents written in R Markdown or Quarto'. Integrates fully into Shiny apps. Countdown to something amazing.
This package implements a wide range of dose escalation designs. The focus is on model-based designs, ranging from classical and modern continual reassessment methods (CRMs) based on dose-limiting toxicity endpoints to dual-endpoint designs taking into account a biomarker/efficacy outcome. Bayesian inference is performed via MCMC sampling in JAGS, and it is easy to setup a new design with custom JAGS code. However, it is also possible to implement 3+3 designs for comparison or models with non-Bayesian estimation. The whole package is written in a modular form in the S4 class system, making it very flexible for adaptation to new models, escalation or stopping rules. Further details are presented in Sabanés Bové et al. (2019) <doi:10.18637/jss.v089.i10>.
This package provides a clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.
Predicts 3 to 12 months prognosis in Chronic Obstructive Pulmonary Disease (COPD) patients hospitalized for severe exacerbations, as described in Almagro et al. (2014) <doi:10.1378/chest.13-1328>.
This package provides functions to calculate the relative crystallinity of starch by X-ray Diffraction (XRD) and Infrared Spectroscopy (FTIR). Starch is biosynthesized by plants in the form of granules semicrystalline. For XRD, the relative crystallinity is obtained by separating the crystalline peaks from the amorphous scattering region. For FTIR, the relative crystallinity is achieved by setting of a Gaussian holocrystalline-peak in the 800-1300 cm-1 region of FTIR spectrum of starch which is divided into amorphous region and crystalline region. The relative crystallinity of native starch granules varies from 14 of 45 percent. This package was supported by FONDECYT 3150630 and CIPA Conicyt-Regional R08C1002 is gratefully acknowledged.
Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.
This package implements computationally-efficient construction of confidence intervals from permutation or randomization tests for simple differences in means, based on Nguyen (2009) <doi:10.15760/etd.7798>.
Correcting area under ROC (AUC) for measurement error based on probit-shift model.
Implementation of DetMCD, a new algorithm for robust and deterministic estimation of location and scatter. The benefits of robust and deterministic estimation are explained in Hubert, Rousseeuw and Verdonck (2012) <doi:10.1080/10618600.2012.672100>.
This package provides a collection of functions for calculating the M2 model fit statistic for diagnostic classification models as described by Liu et al. (2016) <DOI:10.3102/1076998615621293>. These functions provide multiple sources of information for model fit according to the M2 statistic, including the M2 statistic, the *p* value for that M2 statistic, and the Root Mean Square Error of Approximation based on the M2 statistic.
This package provides a collection of novel tools for generating species distribution and abundance models (SDM) that are dynamic through both space and time. These highly flexible functions incorporate spatial and temporal aspects across key SDM stages; including when cleaning and filtering species occurrence data, generating pseudo-absence records, assessing and correcting sampling biases and autocorrelation, extracting explanatory variables and projecting distribution patterns. Throughout, functions utilise Google Earth Engine and Google Drive to minimise the computing power and storage demands associated with species distribution modelling at high spatio-temporal resolution.
This package provides a set of user-friendly wrapper functions for creating consistent graphics and diagrams with lines, common shapes, text, and page settings. Compatible with and based on the R grid package.
Efficient procedures for fitting the DD-PCA (Ke et al., 2019, <arXiv:1906.00051>) by decomposing a large covariance matrix into a low-rank matrix plus a diagonally dominant matrix. The implementation of DD-PCA includes the convex approach using the Alternating Direction Method of Multipliers (ADMM) and the non-convex approach using the iterative projection algorithm. Applications of DD-PCA to large covariance matrix estimation and global multiple testing are also included in this package.
Simulation models (apps) of various within-host immune response scenarios. The purpose of the package is to help individuals learn about within-host infection and immune response modeling from a dynamical systems perspective. All apps include explanations of the underlying models and instructions on what to do with the models.